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Chapter 1 

In this chapter, we introduce the concept of text–to–speech (TTS) 

synthesis, we analyze its benefits and we offer an overview of the structure 

of this work.  

Introduction 

1.1 The TTS task 

The recent advances in technology have led to a large spread of software 
and devices that are focused on delivering high level accessibility to end–users. 
The technologies involved in this process fall into the field of Human Computer 
Interaction (HCI) and the current trend in research and commercial application 
development is toward building dialog enabled interfaces that allow fast and 
reliable interaction between humans and computers (see chapter 7 for a detailed 
description). Text–To–Speech (TTS) synthesis falls into the larger domain of 
Spoken Language Processing.  

Spoken Language Processing (SLP) is a research domain oriented toward 
processes, methods and technologies designed to enable communication between 
users and computers through spoken language. It contains three primary research 
domains: (1) automatic speech recognition (ASR), (2) text–to–speech synthesis 
(TTS) and (3) specific areas of the broader field of Natural Language Processing 
(NLP), providing the infrastructure and essential support for the TTS process.  

The main difference between TTS and other types of speech synthesis 
(e.g. domain specific speech synthesis) is that TTS has to be able to synthesize 
voice from an arbitrary or unrestricted text. The conversion from speech to 
text is a process which involves information loss. On the other side, converting 
back from text to spoken language requires the recovery of this information, 
which in some cases is a near to impossible-to-achieve desideratum, thus 
rendering the TTS task extremely difficult (we will further address this issue in 
chapter 5, when we will refer to speech and prosody). Of course, the level of 
quality in terms of speed, intelligibility and naturalness of a state–of–the–art 
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limited–domain speech synthesis system is unmatched by TTS: the restricted 
system works with a limited number of possible input and output combinations 
and, together with meticulous data preparation will produce almost flawless 
results. In comparison, TTS has to work with unpredictable inputs that require 
carefully crafted and computationally expensive NLP and Digital Signal 
Processing (DSP) steps (see figure 1). 

 

Figure 1 – Basic TTS architecture 

The large interest shown toward mimicking human voice, starting with 
the first generation of rule–based speech synthesis systems (Allen et al., 1987), 
followed by corpora based methods such as concatenative unit selection or 
statistical parametric speech synthesis (Tokuda et al., 2000) combined with an 
abundant number of studies addressing the issue of out–of–vocabulary (OOV) 
words plaguing specific sub–tasks of the process, shows just how complex the 
TTS task is. Regardless of the approach, significant effort has been invested in 
trying to improve the naturalness of the synthetized voice and to increase the 
level of acceptance of TTS systems amongst its users. However, as pointed out by 
the Lessac research group, “the expressive human speech is prosodic – it is 
musical, with melodies and rhythms that clarify words and phrases, as well as 
create the auditory context to enhance a listener's comprehension. The prosodic 
musical overlay communicates emotion and lowers the cognitive load. Natural 
sounding speech, whether spoken or synthesized, enables the human mind to 
handle listening and comprehension as a background task, not requiring full 
concentration.”1. Text does not share the same ability to encode information as 
speech itself, and even skilled writers find it hard to correctly embed the message 
they want to share without requiring an intensive effort from the reader, 
sometimes failing in this attempt. 

  

                                              
1 http://lessactech.com/  
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1.2 Applications of TTS synthesis 

To outline the benefits of TTS synthesis we will start by pointing out 
that speech is the preferred and common way of interaction between humans and 
it is expected that the same type of interaction would be beneficial in generic HCI 
systems. TTS also contributes in more specific areas, such as in closing the gap 
between elderly and/or disabled people and the rest of the society in terms of 
autonomy. 

Examples of applications that involve TTS synthesis are: 

- Accessibility for the visually impaired; 
- Narrators: e–book readers, email readers etc.;  
- Speech translation; 
- General HCI (e.g. navigation systems); 
- E–learning systems. 

These general examples are provided to demonstrate the importance of 
TTS synthesis; a fine–grained description will be later presented in section 7. 

1.3 Original contributions to Romanian text–to–speech 

synthesis 

One of the main impairments of Romanian TTS synthesis was the lack of 
(freely available) resources. It is only in recent years that the Romanian Speech 
Synthesis (RSS) database (Stan et al., 2011) has been freely released for research 
purposes. This has undoubtedly boosted research in this field. One major 
contribution to Romanian TTS synthesis was to build and evaluate a prosody 
annotated corpus, based on a section of the RSS database (see chapter 5). The 
corpus is composed of a mixture of data obtained from all the NLP methods that 
will be later presented (chapter 3), with an additional manually–created prosody 
layer. This layer uses the Tone and Break Indices (ToBI) (Silverman et al., 1992) 
standard for annotation with the adjustments introduced by Jitcă et al. (2012) to 
suite the Romanian prosody phenomena. The corpus is available through the 

META–SHARE platform2. 

                                              
2 http://ws.racai.ro:9191  
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Another contribution was to create a NLP Framework specifically 
designed for Romanian TTS synthesis (see chapters 3 for details and 6 for 
evaluation). Most of the tools and methods included in this framework are 
statistically–based because (1) they can automatically extract rules from existing 
corpora, (2) they offer language independence and (3) they do not require 
extensive linguistic knowledge in order to provide highly accurate solutions to 
typical TTS–related NLP problems. The work focused on adapting state–of–the–
art methods to Romanian and  developing and testing original solutions such as 
(1) large tagset labeling with Neural Networks for part–of–speech tagging, (2) 
lexical stress prediction using the Margin–Infused Relaxed Algorithm in a 
sequence labeling setting and (3) detection and transliteration of foreign words for 
TTS. 

The final section of this thesis covers a typical application of Spoken 
Language processing, namely Speech to Speech Translation, which involves ASR, 
Machine Translation (MT) and TTS. To the best of the author’s knowledge, this 
type of application has never been applied to Romanian. Besides the external 
ASR solution (Google ASR), the rest of the system is built using locally 
developed resources and tools such as RACAI MT System, RACAI TTS system 
(which is the subject of the current work) and RACAI Spellchecker.  

RACAI Spellchecker is also an original contribution consisting of set of 
tools and methods designed to provide spellchecking, word–casing and diacritic 
restoration. Its main purpose is to provide necessary text–processing between the 
ASR and MT components in Speech to Speech synthesis, as well as offering 
generic functionality as a text–proofing tool.  

1.4 Thesis structure 

Chapter 2 contains general theoretical aspects regarding the production 
of human speech, analogue and digital signals, models for signal representation 
and methods for signal analysis, in order to create the foundation and context for 
the rest of the presentation. 

Chapter 3 offers insight into the NLP processing steps involved in TTS 
synthesis, providing a review of the already available NLP tools and frameworks 
and continues with original contributions brought to the field of Romanian TTS 
synthesis. 
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Chapter 4 expands on the processing involved in the actual generation of 

speech from text and introduces general knowledge about speech analysis for TTS 
and corpora based speech synthesis methods. 

Chapter 5 discusses the complex process of prosody prediction in TTS 
synthesis, starting with typical prosody annotation systems and continuing with 
the development and evaluation of the RSS–ToBI corpus. 

Chapter 6 contains a thorough real–world evaluation of the work 
presented in this thesis and describes the steps involved in adapting this system 
to English during the 2013 Blizzard Challenge TTS evaluation campaign. 

Finally, chapter 7 introduces an application of TTS synthesis, namely 
Speech translation and describes the work involved in creating a Romanian–
English bi–directional speech translation system implemented on a networked 
mobile Android–based platform. 

Before continuing, it must be mentioned that the theoretical information 
in chapter 2 is only designed to provide a simple context of the TTS task and the 
rest of the theoretical notions, theories, methods, models and techniques will be 
presented when needed in each chapter or sub–chapter. 

 



Chapter 2 

This chapter is focused on the theoretical aspects of human speech 

production and digital signal processing for speech synthesis 

Fundamentals 

2.1 The production of human speech 

Human speech is a complex physical and psychological process. Knowing 
how this process happens at the physical level is important for understanding the 
parameter extraction process used both in speech synthesis and speech 
recognition. The human speech production apparatus is composed of (1) the 
lungs, (2) the vocal folds and (3) the articulators.  

The lungs represent a pump responsible for producing the air flow for 
vibrating the vocal folds. The vocal folds vibrate and generate audible pulses 
which control the pitch and tone of the voice. The modulated airflow from the 
vocal folds is than filtered by the articulators, which are the tongue, palate, 
cheeks, nose and lips. The articulation process produces classes of sounds which 
are primarily divided into vowels and consonants. 

Sounds are best characterized using the frequency domain (see section 2.2 
for details) and as a consequence of the speech apparatus physiognomy we can 
observe a number of properties regarding the human voice. First of all, the pulses 
generated by the vocal folds determine a so called fundamental frequency or pitch 
of the voice and a number of harmonics that are dependent on this fundamental 
frequency. The exact pitch value varies with speakers but it is usually inside the 
100–250 Hz interval for male speakers and higher for female speakers. An analysis 
of the speech spectrum reveals that most of the energy during normal human 
speech is located between 0 and 4 kHz; above 10 kHz the energy level is very low. 
Thus, by using a sampling rate of 8 kHz in the acquisition process, the human 
voice is still intelligible, a fact which is commonly exploited in communications.  

Different sounds, especially voiced sounds (see section 2.3) have specific 
regions inside the spectrum where the energy is higher. These regions are 
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commonly referred to as formants (Fant, 1970) and they are used to (1) identify a 
phoneme or (2) extract information about the speaker. 

2.2 Sounds of the Romanian language  

This section covers theoretical aspects about the sounds of the Romanian 
language, their classification and their articulatory features and it is motivated by 
two of the main processes involved in TTS synthesis: (1) the conversion of text 
into phonemes (see section 3.7 for details) and (2) the feature extraction process 
for corpora based speech synthesis systems (see sections 3.1, 4.1, 4.2 for details):  

(1) One important task of TTS is the conversion of the sequence of 
input words into a sequence of sounds. This is a complex process 
which involves a lot of text pre–processing (see chapter 3 for 
challenges of natural language processing for text–to–speech 
synthesis) inside which one of the core components is phonetic 
transcription. Finding the relationship between letters of a word 
(usually referred to as graphemes) and their phonetic equivalents is a 
complex task for all languages (especially English) and although 
Romanian has a preponderantly phonetic orthography, the task of 
phonetic transcription is not straight–forward (see section 3.7 for 
details); 

(2) Corpora based speech synthesis methods such as unit selection or 
statistical parametric speech synthesis (see chapter 4, section 4.2) use 
the articulatory features extracted from a window of three to five 
phonemes (centered on the current phoneme) as context information 
in the synthesis process. This is mandatory for building a prosodic 
context and for being able to group similar sounds in the process of 
parameter extraction and generation. 

Before proceeding with the description of the Romanian sound inventory 
some general information about phonetic transcription and computer annotation 
standards must be provided:  

(1) The International Phonetic Alphabet (IPA) is an alphabetic 
system used for phonetic annotation, intended for providing a 
written representation for the oral language (IPA, 1999). It is 
composed of an inventory of 107 phonetic symbols and 52 diacritical 
marks.  

(2) Speech Assessment Methods Phonetic Alphabet (SAMPA) 
represents a computer readable phonetic alphabet which is used to 
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encode the IPA in American Standard Code for Information 
Interchange (ASCII). 

The following presentation is compiled from multiple sources (Vasiliu, 
1956; Burileanu, 1999; Stan, 2011). The phonetic notation conventions are not 
SAMPA. They are identical to those proposed in (Stan, 2011) (see Table 1 for 
correspondence between the Romanian phonetic inventory, the SAMPA standard 
and RSS conventions) because most work was carried around the RSS corpus 
(Stan et al., 2011) in which these conventions are used. 

Table 1 – Correspondence between the RSS notation standard and SAMPA – 

adapted from Stan (2011) 

Phoneme Sample 

word 

SAMPA Phoneme Sample 

word 

SAMPA 

a maria a zh ajutor Z 

@ casă @ l alta l 

a@ mână/început 1 m amară m 

b abac b n însă n 

k act k o motor o 

ch acheea tS o@ oaie o_X 

d dacă d p apă p 

e despre e r artă r 

e@ ceas e_X s asta s 

f fapt f sh și S 

g agonie g t tata t 

dz geam dZ ts țară ts 

h hartă h u munca u 

i inimă i w plouat w 

j iepure j v vara v 

ij câini i_0 z azi z 

 
In Romanian the phonetic inventory is divided into two main categories: 

(1) Consonants, which represent a distinctive class of sounds which are 
generated by obstacles inside vocal filter 

(2) Vowels. 
This coarse classification is further refined based on articulatory 

properties: 
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(1) Vowels (see table 2):  

a. Based on the opening angle of the jaw (apperture): 
i. Open vowels: a 
ii. Mid vowels: e, e@, @, o, o@ 

iii. Closed vowels: i, j, ij, a@, u, w 

b. Based on the articulation point: 
i. Rear vowels: e, e@, i, ij, j 
ii. Central vowels: a, @, a@ 
iii. Forward vowels: o, o@, u, w 

c. Based on the contour of the lips: 
i. Rounded vowels: o, o@, u, w 

ii. Unrounded vowels: a, e, e@, i, j, ij, @, a@ 

 

Table 2 – Vowel classification based on articulatory features 

Phoneme Opening Articulation point Lips 

@ Mid Central Unrounded 

a Open Central Unrounded 

a@ Closed Central Unrounded 

e Mid Front Unrounded 

e@ Mid Front Unrounded 

i Closed Front Unrounded 

ij Closed Front Unrounded 

j Closed Front Unrounded 

o Mid Back Rounded 

o@ Mid Back Rounded 

u Closed Back Rounded 

w Closed Back Rounded 

 

(2) Consonants (table 3): Consonants are divided into two main groups: 
voiced and unvoiced 

a. Unvoiced consonants: 
i. Articulation type: 

1. Occlusives: p, t, k – they are formed by a 
complete closing and sudden openning of the 
vocal tract 
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2. Fricatives: f, s, sh, h – they are formed by a 
narrowing of the vocal tract 

3. Affricates: tz, ch, k(e/i) – they start as 
occlusive consonants and end like fricative 
consonants. 

ii. Based on the possition of the obstacle inside the vocal 
filter: 

1. Bilabial: p 
2. Labio–dental: f 
3. Dental: t, s, tz 
4. Pre–palatal: sh, ch 

5. Palatal: k(e/i) 

6. Velar: k 
7. Glottal: h 

b. Voiced consonants: this class of consonants shares some 
similarities with vowels such as the fact that their articulation 
process is accompanied by the vibration of the vocal folds. 
However, like the rest of the consonants they are always 
unstressed inside a sillable. 

i. Articulation type: 
1. Oclussive: m, n, b, d, g 

2. Affricates: g(e/i), gh 

3. Fricatives: v, zh, z,  

4. Liquid: l 
5. Vibrant: r 

ii. Based on the possition of the obstacle inside the vocal 
filter: 

1. Bilabial: m, b 
2. Labio-dental: v 

3. Dental: d, n, r, z 
4. Lateral: l 
5. Pre-palatal: zh, gh 
6. Palatal: g(e/i) 
7. Velar: g 

iii. Based on nasality – the only nasal sounds in Romanian 
are: m, n 



CHAPTER 2 - Fundamentals 11 

 
Table 3  – Classification of consonants based on articulatory features 

Articulation 

type 
Voicing 

O
cc

lu
si

v
e 

A
ff
ri

ca
te

 

F
ri

ca
ti

v
e 

O
cc

lu
si

v
e 

n
a
sa

l 

Liquid 

L
a
te

ra
l 

V
ib

ra
n
t 

Bilabial 
Unvoiced p           

Voiced b     m     

Labio–dental 
Unvoiced     f       

Voiced     v       

Dental 
Unvoiced t tz s       

Voiced d   z n l r 

Pre–palatal 
Unvoiced   ke/ki sh       

Voiced   ge/gi zh       

Palatal 
Unvoiced  ch         

Voiced  gh         

Velar 
Unvoiced k           

Voiced g           

Glottal 
Unvoiced     h       

Voiced             

2.3 Digital signal processing 

Digital signal processing is a technological area supported by a rigorous 
mathematical apparatus designed for (1) obtaining, (2) manipulating and (3) 
extracting information from a signal which is represented as discrete values.  

The speech signal originating from the human speech production system 
is an analog (continuous) signal that cannot be processed directly. The process of 
obtaining a discrete representation of a continuous signal is called sampling.  

2.3.1 Sampling 

For convenience, a continuous signal �  can be represented as a 
continuous function ��(�). For converting this signal into a digital (discrete) form 
we are required to use a sampling period �, which is used to define our discrete 
signal �[�] as �[�] = ��(��) (see figure 2). Sampling can be actually regarded as 
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a pulling mechanism which periodically (depending on the sampling period) 
checks the value of the analog signal �. How well does �[�] approximate the 
original signal � depends on the value of the sampling period: the larger � is, the 
coarser the approximation becomes; the smaller � is, the more �[�] resembles �. 

 

Figure 2 – Example of a sampled signal 

It is easier to describe a digital signal using a function of �, called 
sampling frequency and defined as �� = 1 �� , mainly because of the implications of 

the Nyquist–Shannon sampling theorem (Nyquist, 1928;Shannon, 1949). 

2.3.2 The Nyquist–Shannon sampling theorem 

The Nyquist–Shannon sampling theorem, commonly referred to as the 
sampling theorem, is a result of information theory, which states that if a signal, 
represented by a continuous time function ��(�), contains no frequencies higher 
than �, than the signal is completely determined by a series of points equally 
spaced at 1 2��  apart. This means that from a sampled signal �[�] we can fully 

reconstruct the original signal ��(�) only if it is band–limited to half of the 
sampling rate. 

2.3.3 Speech signal representations 

The most straight–forward way to represent a signal is through the use 
of a continuous time–series ��(�) or a discrete time series �[�], a method which is 
referred to as time–domain representation. However, this type of representation is 
not always suitable for processing signals and extracting parameters since most of 
these parameters are frequency related.  
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One basic type of speech representation, inspired by the production of 

human speech (presented in section 2.1), is the source–filter model, in which 
speech is decomposed into a source (vocal air at the vocal cords) that passes 
through a linear time varying filter (resonances of the vocal tract). 

The dynamics of the speech signal give it a property that is routinely 
used by ASR and TTS systems of being quasi–stationary (almost stationary) for 
short periods of time (from 20 to 50 milliseconds). By exploiting this property and 
performing a segmentation of the time–domain representation into a series of 
analysis frames, the speech signal can be converted into the frequency domain 
representation through the use of a mathematical transform, called the Fourier 

Transform. 

2.3.3.1 Fourier Transform 

The Fourier Transform is a mathematical transform, named after the 
mathematician and physicist Joseph Fourier, which, applied to a mathematical 
function of time �(�), transforms it into another function, usually denoted as �(�) (see equation 1), where � represents cycles per second (hertz) or radians per 
second.  

�(�) = � �(�)����������∞
��  (1) 

The original function �(�) can be recovered using the Inverse Fourier 

Transform (equation 2): 

�(�) = � �(�)���������∞
��  (2) 

The Fourier transform originates from the study of the Fourier series, in 
which complex mathematical functions are rewritten as sums of waves expressed 
as sines and cosines. 

A variation of the Fourier Transform that is used in computational 
applications is the Discrete Fourier Transform (DFT). In mathematics, the 
discrete Fourier transform (DFT) converts a finite list of equally spaced samples 
of a function into the list of coefficients of a finite combination of complex 
sinusoids, ordered by their frequencies, that has the same sample values. It can be 
said to convert the sampled function from its original domain (often time or 
position along a line) to the frequency domain. 
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The input samples as well as the output coefficients are complex 
numbers. The frequencies of the output sinusoids are integer multiples of a 
fundamental frequency, whose corresponding period is the length of the sampling 
interval. The combination of sinusoids obtained through the DFT is therefore 
periodic with that same period. The DFT differs from the discrete–time Fourier 
transform (DTFT) in that its input and output sequences are both finite; it is 
therefore said to be the Fourier analysis of finite–domain (or periodic) discrete–
time functions. 

The Fast Fourier Transform algorithm (Cooley and Tukey, 1965) is a 
highly efficient algorithm for solving the DFT and its inverse, which takes as 
input a sequence of N complex numbers and transforms it into another sequence 
of complex numbers. It is used to either decompose the input sequence of 
numbers into components of different frequencies (see equation 3) or vice–versa 
(see equation 4). 

�� =  �[�]�����! �"!�#
"$% , ' = 0,1…* − 1, (3) 

�[�] = 1* ������! �"
!�#
�$% , � = 0,1…* − 1. (4) 

If one would naively perform the DFT using its definition, the 
complexity of the algorithm would be -(��) mathematical operations. However, 
the Cooley–Tukey FFT algorithm takes advantage of a symmetrical 
mathematical property of DFT and reduces the complexity of the calculus to -(� log �). This particular FFT algorithm falls into the divide and conquer class, 
requiring that the input data size is a power of 2 and because of the previously 
mentioned cvasi–stationary property of the speech signal it is convenient to 
perform FFT analysis by dividing the input data into sequences of 2� elements 
that fit between 20 and 50 ms. This process is performed by applying a window 

function over the input data and, in some cases, by adding zeros to the input 
data (0–padding). 

The choice of the window function is highly important mainly because of 
spectral leakage. Spectral leakage is an unwanted effect in which the Fourier 
components of an analyzed signal are spread around the spectrum. The most 
common windowing function is the rectangular window (see equation 5) 

1(�) = 21, �34	�	6�73�89�8	�3	:	89;��	9���4;:70,			3�ℎ�41ℎ9=�  (5) 
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The wide–spread of the leakage makes the rectangular window not a 

good choice in speech signal processing. Instead, depending on the application, 
some popular choices for window functions are: the Blackman window (equation 
6), the Hann window (equation 7), the Hamming window (equation 8) or the 
Tukey window (equation 9) (Blackman and Tukey, 1959). 

1(�) = 0.35875 − 0.48829 cos F��"!�#G + 0.14128 cos FI�"!�#G −0.01168 cos FK�"!�#G  (6) 

1(�) = 0.5 L1 − M3= 2N�* − 1O (7) 

1(�) = 0.54 − 0.46 Lcos 2N�* − 1O (8) 

1(�) =
PQR
QS12T1 + cos N |�| − V

�2(1 − V)*2W , 9�
V*2 ≤ |�| ≤ *2

1, 9�	0 ≤ |�| ≤ V*2
 

 

(9) 

2.3.3.2 Low–dimensional representations 

By computing the input and output data size involved in the Fourier 
analysis of the signal, one can see that it ranges from 256 to 1024 elements, 
depending on the sampling rate. This high dimensional representation of the 
speech signal generates a number of problems that are usually related to data–
sparseness in statistical methods and poses a series of challenges for both ASR 
and statistical parametric TTS synthesis. For this reason, a lot of research has 
been focused in finding a lower dimensional representation that would preserve 
the properties of the original one and would be suitable for statistical processing. 

One of the popular methods for obtaining low–dimensional spectral 
representations of speech is the Mel–frequency cepstral (MFC) analysis. It is 
based on the source–filter theory, which suggests that speech can be modeled as a 
two stage process: (1) in the first stage, speech is generated with its own spectral 
structure (usually by the glottal source) and (2) in the second stage, the signal is 
filtered by the vocal tract. In the Mel–frequency cepstral analysis, the transfer 

function of the vocal tract is modeled using Mel–frequency cepstral coefficients 
(MFCCs). In the MFC analysis, the frequency bands are placed on the Mel–scale 
so that they approximate the human auditory system response better than 
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linearly spaced frequency bands. In order to calculate the MFCCs from a 
windowed signal the following steps are required: 

(1) Applying the DFT on the windowed signal 
(2) Filter the Fourier Spectrum through the Mel–scale filter bank 
(3) Calculate the Log power spectrum 
(4) Apply the Discrete Cosine Transform3 over the resulting powers as 

they were a signal 

The MFCC representation is only one of the possible low–dimensional 
spectral representations of speech. Other examples are: the linear predictive 
coding (LPC) (Tremain, 1982), the perceptual linear predictive analysis (PLP) 
(Hermansky, 1990), the Relative Spectral Transform Perceptual Linear Prediction 
(RASTA–PLP) (Hermansky et al., 1992) etc. 

2.4 Basic Machine Learning 

Machine Learning (ML) is a sub–domain of Artificial Intelligence (AI) 
that refers to the study of methods and techniques and the implementation of 
algorithms that are able to learn from available data. One of the important 
properties of ML algorithms is their ability to generalize, which means that they 
work well on previously unseen data. 

The relationship between text (usually regarded as a sequence of letters 
or graphemes) and the parameters used to characterize the human voice (spectral 
and prosodic) is not straightforward. The number of variations in which a single 
utterance can be spoken is virtually unlimited and currently the best solution for 
TTS systems is to find a general and acceptable solution, in which any 
combination of input graphemes (previously seen or unseen) is converted into 
speech based on observing patterns in previously seen data. While this is achieved 
through the use of ML algorithms or classifiers, it is not a simple task as the 
performance of these algorithms depends on a number of factors: 

Note: in the following description, the term model size/structure refers 
to the internal representation used by each classifier to store model parameters 
(e.g. number of hidden layer and their size for neural networks, number of 

                                              
3 The discrete cosine transform (DCT) expresses a finite sequence of data 

points in terms of a sum of cosine functions oscillating at different frequencies. 
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clusters, polynomial order for regressions etc.), not to the size of the training 
dataset, which is the number of examples provided during training.  

(1) it is critically important to choose the correct ML algorithm for a 
given task: some classifiers are intended to provide a multinomial 
output (a discrete set of labels), while others are designed for real–
valued output; there are online machine learning algorithms, 
meaning that they are trained with one example at a time thus 
making them adaptable to changing inputs and there are offline 
machine learning algorithms that train initially on a static dataset 
and do not change in time; there are standard algorithms for which 
the classification result of an instance does not affect the following 
instance to be classified and there are sequence labeling algorithms 
for which the classification result is dependent on the previous 
results,  
 

(2) the performance of any classifier is dependent on the (1) feature–set 
that is used as input, (2) the size/structure of the model it is 
supposed to build for representation and (3) the quality and quantity 
of the training data. Complex features that rarely appear in the 
training corpus combined with over–sized models can easily lead to 
over–fitting the data (working very well on previously seen data but 
not being able to generalize for unseen data), as opposed to using 
simple features and small models which generalize well on unseen 
data but often they under–fit the training examples (the classifier 
works the same on seen and unseen data, but the accuracy figures 
are low). The training data has to be carefully chosen to resemble 
test data as much as possible and to provide sufficient examples, 
since it is impossible to generalize if there is no connection between 
the training and the actual data. 

There are two main classes of ML algorithms: (1) supervised – which 
require that the training data is composed of examples containing pairs of input 
values associated with output values and (2) unsupervised – which use examples 
composed of input values (no associated output values) which are then grouped 
together by similarity.  

The operation performed by most unsupervised ML algorithms is known 
as clustering and it refers to grouping together or partitioning similar input 
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examples which are close to one another based on a predefined metric. The most 
common unsupervised ML algorithm is K–means clustering, which is designed to 
separate a set of � observations (�#,") into a set of ' clusters (see equation 10), 
where each observation is placed in a cluster with the nearest mean. 

argmin^_…^`   a�b − c�a�d∈^f
�
�$#  (10) 

where g�  is a partition with the mean c� , �b  is an observation and a�b − c�a is a distance between two n–dimensional vectors (usually Euclidian 
distance). 

A well–known and frequently used algorithm for automatically 
optimizing clustering decisions is Expectation Maximization (EM). EM is a 
monotonically converging iterative algorithm which is used for finding the 
maximum likelihood estimates of parameters in statistical methods. It alternates 
between an Expectation step (in which it calculates a function for the expectation 
of the log–likelihood based on its current parameters) and a Maximization step 
(in which in re–computes the parameters in order maximize the previously 
constructed expectation function), hence the name Expectation–Maximization. 
Besides data–clustering, variations of the EM algorithm are often used in NLP, 
TTS and ASR to automatically induce alignments between input sequences and 
output states. 

In supervised ML the training data is composed of a pair of input values 
and desired output values. Both the input and output can use real–valued vectors 
or a discrete set of labels. 

There is a large variety of supervised ML algorithms such as: linear, 
polynomial and logistic regression, Support Vector Machine (SVM) (Cortes and 
Vapnik, 1995), Maximum Entropy classifiers (MaxEnt) (Berger et al., 1996), 
Decision Trees Learning (Iterative Dichotomiser 3 (ID3), C4.5, Classification and 
Regression Trees (CART) etc.), Random Forests, Artificial Neural Networks and 
many others. This presentation will only focus on two algorithms, namely 
Artificial Neural Networks (ANNs) and the Margin Infused Relaxed Algorithm 
(MIRA) (Crammer and Singer, 2003) because they will be later used in the 
following sections for performing various TTS related tasks. 

Artificial Neural Networks are biologically inspired computational models 
composed of a network of interconnected computationally simulated artificial 
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neurons. The links between neurons are called synapses and they are usually 
numerically represented as a real–valued weight. Based on connection graph 
between neurons, ANNs can be (1) feed–forward when neurons are grouped in 
layers and connections are formed only between neurons belonging to consecutive 
layers or (2) recurrent, which allow directed cycles in their structure. The 
simplest feed–forward network architecture is usually composed of an input layer, 
a hidden layer and an output layer and it is easily trained using the 
Backpropagation algorithm (Rumelhart et al., 1986). Depending on the task, 
several ANN architectures such as Long–Short Term Memory (LSTM) 
(Hochreiter and Schmidhuber, 1997), Restricted Boltzmann Machine (RBM) 
(Ackley et al., 1985; Hinton and Sejnowski, 1986; Chen and Murray, 2003; 
Tieleman et al., 2008), Hopfield networks (Hopfield, 1982), Elman networks 
(Elman, 1990) etc. can be used, but the work described in this thesis relies on a 
classical three layer network trained using Backpropagation (see section 3.3 for 
details). 

The Margin Infused Relaxed Algorithm (MIRA) was initially designed as 
an online ML algorithm for multiclass classification by Cramer and Singer (2003). 
It is a modified version of a perceptron (a special ANN architecture with only two 
layers) learning algorithm, which works by processing the examples one by one 
and updating the weights so that the current example is correctly classified with a 
margin against the incorrect labels. Its functionality is extended by teaching the 
classifier to predict label bi–grams instead of unigrams and applying a dynamic 
programming algorithm such as Viterbi (Forney, 1973) in order to select an 
optimal sequence over a number of consecutive inputs that actually compose the 
example, thus making it suitable for the task presented in section 3.7. 
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Chapter 3 

This chapter covers aspects regarding the text–to–speech processing 

required for any TTS synthesis system. The first section is a review of 

currently freely–available TTS synthesis systems and the methods and 

techniques they employ during the text pre–processing phase of TTS. As 

shown, most of the methods implemented in these systems are not state–

of–the–art or offer limited performance on Romanian. The work further 

presented adapts state–of–the–art methods to Romanian or introduces 

original approaches such as lexical stress prediction and large–tagset part–

of–speech labeling with Neural Networks. 

Basic natural language processing 

for text–to–speech synthesis 

3.1 General description of text–processing front–ends 

As previously mentioned, the work inside a TTS system is divided 
between the NLP front–end and a speech processing back–end. The role of the 
front–end is to transform the input text into an intermediate representation 
which can be then used by the back–end in the voice synthesis process. In most 
TTS synthesis systems, the tasks performed by the front–end are two–fold: (1) 
text preparation and (2) feature extraction; this does not imply that the tasks are 
independent.  

Text preparation ensures (a) the correctness of the input data by 
performing spellchecking, diacritic restoration and word–recasing and (b) 
normalization of the input data by expanding abbreviations, acronyms, numbers, 
dates and other formulas or numerical expressions into their spoken form. 

In the feature extraction stage, the front–end converts the input text into 
the previously mentioned intermediate representation, which must aid the back–
end in the process of speech generation. This representation is usually composed 
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of phonemes with associated local context features and in some cases with 
additional prosodic features extracted from the global context.  

The local context contains information such as: (1) part–of–speech, (2) 
current syllable, (3) next syllable, (4) previous syllable, (5) number of syllables  of 
the current word, (6) syllable position inside the word, (7) syllable position inside 
the utterance, (8) next punctuation mark, (9) previous punctuation mark, (10) 
local phonetic information (surrounding phonemes), (11) articulatory features, 
etc. 

Features extracted from the global context are usually designed to 
enhance the prosody modeling capabilities of the speech synthesis backend by 
providing information such as speaking style, word emphasis and intonation 
patterns. 

3.2 Case study of DFKI MARY, Festival, Flite and 

FreeTTS4 

Building the local context features for TTS synthesis requires that the 
words inside the input text are (1) syllabified and (2) phonetically transcribed 
and (3) that the stress information is known. These tasks are routinely achieved 
through the use of lexicons for known words, but regardless of the size and 
coverage of these lexicons, arbitrary texts are likely to contain previously unseen 
words that are referred to as out–of–vocabulary (OOV) words. Usually most of 
these words are either proper names, locations or technical terms and they 
abound inside any text starting from newspaper articles or novels to webpages 
that are likely to contain at least one proper name. Miss–processing of these 
words usually degrades the output quality of the speech synthesis system – thus it 
is highly important to integrate OOV word treatment inside the TTS flow. 

Since the quality of the synthesized voice is significantly affected by the 
front–end’s ability to correctly process OOV words, a review of the current freely 
available NLP frontends is critically important. Though a lot of research has been 

                                              
4 This review of open-source TTS systems was first presented as a section of  the author’s book 

chapter “Handling Two Difficult Challenges for Text-to-Speech Synthesis Systems: Out-of-
Vocabulary Words and Prosody: A Case Study in Romanian”,  in Amy Neustein’s  book “Where 
Humans Meet Machines” 
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carried out for the above–mentioned NLP steps, and current state–of–the–art 
methods do yield good results, most of the existing open–source implementations 
rely either on poorly documented or outdated methods that offer only baseline 
performance. We enumerate several such TTS open–source systems which are 
mainly intended for English but, with proper lexicons and training data, can work 
for other languages: 

• DFKI MARY (Modular Architecture for Research on speech 
sYnthesis) is a result of the collaboration between DFKI and the 
Institute of Phonetics at Saarland University. It was initially 
designed for German (De) but it includes a Voice Creation 
Toolkit and it currently provides a TTS interface for English 
(En), Russian (Ru), Italian (It), Turkish (Tr) and Telugu (Te). 
Some of the modules for English use tools provided with 
Festival. MARY TTS uses a HMM POS Tagger implemented 
after TnT (Brants, 2000) and a custom method for letter–to–
sound (LTS) conversion of OOV words; 

• Festival is a TTS system developed at Carnegie Mellon 
University (CMU). The NLP processing module of Festival 
implements CLAWS for POS tagging (DeRose, 1988) and it uses 
the CART (Black et al, 1998) method for OOV words 
processing. Typical pronunciation errors in Festival have the 
following reasons5: (i) letter to sound rules fail on OOV words, 
(ii) foreign proper names often fail, (iii) wrong POS identified 
(newspaper headlines are particularly difficult), (iv) POS is right 
but it is not in the lexicon and (v) POS is not enough to 
differentiate pronunciation (and not yet dealt with by 
homograph disambiguation CART); 

• Flite is a derivative of Festival and uses similar methods and 
techniques for OOV words processing; 

• FreeTTS, which is based on Flite, is likewise a derivative of 
Festival and uses similar methods and techniques for OOV 
words processing. 

 

                                              
5 http://festvox.org/festtut/notes/festtut_toc.html#TOC42  
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Table 4: Details on open–source TTS systems NLP modules. Accuracy figures 

are shown on all / only–OOV words. For phonetic transcription and lexical 

stress assignment the statistics are computed on CMUDICT 

System POS–

tagging 
Phonetic 

Transcription 
Syllabification Lexical 

stress 

assignment 
DFKI 

MARY 

TnT 

 

 

96.7% / 85.5% 

ML/Under–

documented 

 

– / – 

Rule–based/ 

Under–

documented 

– / – 

Rule–based/ 

not 

documented 

– / – 

Festival similar to 

CLAWS 

 

97% / – 

CART with  

EM–derived L2P 

alignments 

– / 57.8% 

Not documented 

 

 

– / – 

CART 

 

 

– / 62.79% 

Flite 

(based on 

Festival) 

Not 

documented 

– / – 

CART 

 

– / 57.8% 

Not documented 

– / – 

Not 

documented 

– / – 

FreeTTS 

(based on 

Flite) 

N/A 

 

– / – 

CART 

 

– / 57.8% 

Not documented 

 

– / – 

Not 

documented 

– / – 

To the author’s knowledge (see Table 4), little information is available 
about the individual performance of each module embedded in the above 
mentioned TTS systems. Only letter–to–sound and POS tagging modules are 
reasonably documented, as they implement well established methods for 
performing subtasks in the text pre–processing step of TTS synthesis. Although 
some of these methods were considered to be optimal around a decade ago, they 
are now far behind the current state–of–the–art for designing well–functioning 
TTS systems. For example, the CART method (Black et al., 1998) for building 
letter–to–sound rules obtains an accuracy of 57.8% (measured using 10-fold 
validation) on OOV words when used on the English CMUDICT, while current 
state–of–the–art letter–to–sound methods (e.g. MIRA) have an accuracy of about 
70% using the same data. Far less information is provided for other modules such 
as syllabification and lexical stress prediction. Most systems implement custom, 
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undocumented methods for such tasks, and computing the OOV accuracy for 
them is complicated, requiring substantial effort. 

3.3 Part–of–speech tagging6 

3.3.1 Introduction 

Part–of–speech tagging is a key process for various tasks such as 
information extraction, text–to–speech synthesis, word sense disambiguation and 
machine translation. It is also known as lexical ambiguity resolution and it 
represents the process of assigning a uniquely interpretable label to every word 
inside a sentence. The labels are called POS tags and the entire inventory of POS 
tags is called a tagset.  

There are several approaches to part–of–speech tagging, such as Hidden 
Markov Models (HMM) (Brants, 2000), Maximum Entropy Classifiers (Berger et 
al., 1996; Ratnaparkhi, 1996), Bayesian Networks (Samuelsson, 1993), Neural 
Networks (Marques and Lopes, 1996) and Conditional Random Fields (CRF) 
(Lafferty et al., 2001). All these methods are primarily intended for English, 
which uses a relatively small tagset inventory, compared to highly inflectional 
languages. For the later mentioned languages, the lexicon tagsets (called morpho–
syntactic descriptions (Calzolari and Monachini, 1995) or MSDs) may be 10–20 
times or even larger than the best known tagsets for English. For instance, the 
Czech MSD tagset requires more than 3000 labels (Collins et al., 1999), Slovene 
more than 2000 labels (Erjavec and Krek, 2008), and Romanian more than 1100 
(Tufiș, 1999). The standard tagging methods, using such large tagsets, face 
serious data sparseness problems due to lack of statistical evidence, manifested by 
the non–robustness of the language models. Accuracy decreases significantly when 
tagging new texts that are not in the same domain as the training data. Even 
tagging in–domain texts may not be satisfactorily accurate. 

One of the most successful methods used for this task, called Tiered 
Tagging (Tufiș, 1999), exploits a reduced set of tags derived by removing several 

                                              
6 Section 3.3 is a close adaptation of the author’s paper “Large tagset labeling using Feed 

Forward Neural Networks. Case study on Romanian Language” presented at ACL 2013 (Boroș et 
al., 2013), followed by relevant sections from “Improving the RACAI Neural Network MSD Tagger” 
(Boroș and Dumitrescu, 2013) 
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recoverable features from the lexicon morpho–syntactic descriptions. According to 
the MULTEXT EAST lexical specifications (Erjavec and Monachini, 1997), the 
Romanian tagset consists of a number of 614 MSD tags (by exploiting the case 
and gender regular syncretism) for wordforms and 10 punctuation tags (Tufiș et 
al., 1997), which is still significantly larger than the tagset of English. The 
MULTEX EAST version 4 (Erjavec, 2010) contains specifications for a total of 16 
languages: Bulgarian, Croatian, Czech, Estonian, English, Hungarian, Romanian, 
Serbian, Slovene, the Resian dialect of Slovene, Macedonian, Persian, Polish, 
Russian, Slovak, and Ukrainian. 

The strategy of the Tiered Tagging methodology is to use a reduced 
tagset (called CTAG–set), where a CTAG (from Corpus POS tags) is a 
generalization of a MSD, from which recoverable context–irrelevant features are 
removed. For instance, the attribute for gender (masculine ‘m’ or feminine ‘f’) 
from MSDs ‘Ncfsrn’ and ‘Ncmsrn’ is deleted to obtain the CTAG ‘NSRN’, 
because the gender information can be deterministically recovered based on the 
CTAG and the wordform itself. The recovering of the left–out attributes (Figure 
1) is based on lexicons, linguistic rules, and, in the case of unknown words, on ML 
techniques (Ceauşu, 2006). When tagging with CTAGs, one can use any 
statistical POS tagging method such as HMMs, Maximum Entropy Classifiers, 
Bayesian Networks, CRFs, etc., followed by the CTAG to MSD recovery. 

 

Figure 3 – Tiered Tagging methodology 
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The language dependent process of manually inferring linguistic rules for 

MSD recovery requires good knowledge of the target language and also extensive 
amounts of time invested in testing and re–design. It is difficult even for a native 
speaker to create such rules without in–depth linguistic knowledge.  

An alternative solution based on local optimizations with feed–forward 
neural networks is further proposed. This method eliminates the need for the two 
stage processing, is much faster at run time, and is comparatively accurate with 
the Tiered Tagging implemented in the TTL tagger (Ion, 2007), available on the 
METASHARE Platform7.  

3.3.2 Large tagset part–of–speech tagging with feed–forward 

neural networks  

Although removing recoverable attributes, as proposed in the Tiered 
Tagging approach, helps the goal of shrinking the lexical tagset to a reasonable 
size, valuable information for contextual disambiguation is also lost. For example, 
the gender agreement rule, valid in many languages, cannot be exploited unless 
the gender attribute is present in the tags. 

The author’s to deal with large tagsets without removing contextually 
useful information is based on Feed Forward Neural Networks (FFNN). FFNN 
are known for their simplicity and robustness in finding and recombining patterns 
inside data. Several neural network architectures have been proposed for the task 
of part–of–speech tagging. Schmid (1994) proposed a FFNN architecture for part–
of–speech tagging obtaining a 96.22% accuracy. In his paper, he argues that 
neural networks are preferable to other methods, when the training set is small. 
He compares his results with a HMM tagger (94.24%) and a trigram tagger 
(96.02%), both trained and tested on the same corpora as his FFNN tagger (the 
Penn–Treebank corpus). A similar approach is presented by Marques and Lopes 
(1996). In their paper, the authors come to similar conclusions as those presented 
in Schmid (1994). The author’s current research supports these findings with an 
additional argument, namely the better fit for managing large tagsets. 

In both approaches mentioned before, the network is trained so that from 
the input vector, to output a real valued vector. Each value in the output vector 

                                              
7 http://ws.racai.ro:9191/  
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is generated by a distinct neuron, and corresponds to a unique tag in the tagset 
(e.g. 100 tags means the network contains 100 neurons on the output layer). The 
input vector for predicting the tag of the current word encodes the tags for the 
previously tagged words and the probable tags for the current and following two 
words, estimated using Maximum Likelihood Estimation (MLE): 

 h(�|1) = i(1, �)i(1)  (11) h(�|1) – The probability of the word w having tag t 

i(1, �) – 
The total number of times, the word w appears with tag t in the 
training corpus 

i(1) – 
The total number of times, the word w appears in the training 
corpus 

 

In the case of out–of–vocabulary (OOV) words, both approaches use 
suffix analysis to determine the most probable tags that can be assigned to the 
current word.  

To clarify how these two methods work, if one wants to train the 
network to label the current word, using a context window of 1 (previous tag, 
current possible tags, and possible tags for the next word) and if there are, say 
100 tags in the tagset, the input is a real valued vector of 300 sub–unit elements 
and the output is a vector which contains 100 elements, also sub–unit real 
numbers. As mentioned earlier, each value in the output vector corresponds to a 
distinct tag from tagset and the tag assigned to the current word is chosen to 
correspond to the maximum value inside the output vector. 

The previously proposed methods still suffer from the same issue of data 
sparseness when applied to MSD tagging. However, in our approach, we overcome 
the problem through a different encoding of the input data.  

The power of neural networks results mainly from their ability to attain 
activation functions over different patterns via their learning algorithm. By 
properly encoding the input sequence, the network chooses which input features 
contribute in determining the output features for MSDs (e.g. patterns composed 
of part of speech, gender, case, type etc. contribute independently in selecting the 
optimal output sequence). This way, the need for explicit MSD to CTAG 
conversion and MSD recovery from CTAGs is removed.  
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3.3.3 The MSD binary encoding scheme 

A MSD language independently encodes a part of speech (POS) with the 
associated lexical attribute values as a string of positional ordered character codes 
(Erjavec, 2004). The first character is an upper case character denoting the part 
of speech (e.g. ‘N’ for nouns, ‘V’ for verbs, ‘A’ for adjectives, etc.) and the 
following characters (lower letters or ‘–‘) specify the instantiations of the 
characteristic lexical attributes of the POS. For example, the MSD ‘Ncfsrn’, 
specifies a noun (the first character is ‘N’) the type of which is common (‘c’, the 
second character), feminine gender (‘f’), singular number (‘s’), in 
nominative/accusative case (‘r’) and indefinite form (‘n’). If a specific attribute is 
not relevant for a language, or for a given combination of feature–values, the 
character ‘–’ is used in the corresponding position. For a language which does not 
morphologically mark the gender and definiteness features, the earlier exemplified 
MSD will be encoded as ‘Nc–sr–’. 

The following process is used in order to derive a binary vector for each 
of the 614 MSDs of Romanian: 

• List and sort all possible POSes of Romanian (16 POSes) and 
form a binary vector with 16 positions in which position k is 
equal 1 only if the respective MSD has the corresponding POS 
(i.e. the k–th POS in the sorted list of POSes); 

• List and sort all possible values of all lexical attributes 
(disregarding the wildcard ‘–‘) for all POSes (94 values) and 
form another binary vector with 94 positions such that the k–th 
position of this vector is 1 if the respective MSD has an attribute 
with the corresponding value; 

• Concatenate the vectors from steps 1 and 2 and obtain the 
binary codification of a MSD as a 110–position binary vector. 

3.3.4 The training and tagging procedure 

The tagger automatically assigns four dummy tokens (two at the 
beginning and two at the end) to the target utterance and the neural network is 
trained to automatically assign a MSD given the context (two previously assigned 
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tags and the possible tags for the current and following two words) of the current 
word (see below for details).  

A training example consists of the features extracted for a single word 
inside an utterance as input and it’s MSD within that utterance as output. The 
features are extracted from a window of 5 words centered on the current word. A 
single word is characterized by a vector that encodes either its assigned MSD or 
its possible MSDs. To encode the possible MSDs equation 12 is used, where each 
possible attribute a, has a single corresponding position inside the encoded vector.  

h(:|1) = i(1, :)i(1)  (12) 

Note that the probability estimates are changed to take into account 
attributes not tags.  

To be precise, for every word wk, we obtain its input features by 
concatenating a number of 5 vectors. The first two vectors encode the MSDs 
assigned to the previous two words (wk–1 and wk–2).The next three vectors are 
used to encode the possible MSDs for the current word (wk) and the following two 
words (wk+1 and wk+2).  

During training, a list of suffixes with associated MSDs is compiled and 
it is later used at run–time to build the possible MSDs vector for unknown words. 
When such words are found within the test data, we approximate their possible 
MSDs vector using a variation of the method proposed by Brants (2000).  

When the tagger is applied to a new utterance, the system iteratively 
calculates the output MSD for each individual word. Once a label has been 
assigned to a word, the word’s associated vector is updated so it will have the 
value of 1 for each attribute present in its newly assigned MSD.  

As a consequence of encoding each individual attribute separately for 
MSDs, the tagger can assign new tags (that were never associated with the 
current word in the training corpus). Although this is a nice behavior for dealing 
with unknown words it is often the case that it assigns attribute values that are 
not valid for the wordform. To overcome these types of errors, an additional list 
of words with their allowed MSDs ambiguity class is used. For an OOV word, the 
list is computed as a union from all MSDs that appeared with the suffixes that 
apply to that word. 
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When the tagger has to assign a MSD to a given word, it selects one 

from the possible wordform’s MSDs in its wordform/MSDs associated list using a 
simple distance function: 

minj∈k |3� − ��|
"
�$%  (13) 

h – The list of all possible MSDs for the given word � – The length of the MSD encoding (110 bits) 3 – The output of the Neural Network for the current word � – Binary encoding for a MSD in P 

3.3.5 Network hyper parameters 

For this particular task, a feed forward neural network with 3 layers (1 
input layer, 1 hidden layer and 1 output layer) and a sigmoid activation function 
(equation 14) was used. While other network architectures such as recurrent 
neural networks may prove to be more suitable for this task, they are extremely 
hard to train, thus, the advantages of such architectures were traded for the 
robustness and simplicity of the feed–forward networks. 

 �(�) = 11 + ��� (14) �(�) – Neuron output 

� – 
The weighted sum of all the neuron outputs from the previous 
layer 

 

Based on the size of the vectors used for MSD encoding, the output layer 
has 110 neurons and the input layer is composed of 550 (5 x 110) neurons. 

In order to fully characterize our system, the following parameters were 
taken into account: accuracy, runtime speed, training speed, hidden layer 
configuration and the number of optimal training iterations. These parameters 
have complex dependencies and relations among each other. For example, the 
accuracy, the optimal number of training iterations, the training and the runtime 
speed are all highly dependent on the hidden layer configuration. Small hidden 
layers give high training and runtime speeds, but often under–fit the data. If the 
hidden layer is too large, it can easily over–fit the data and also has a negative 
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impact on the training and runtime speed. The number of optimal training 
iterations changes with the size of the hidden layer (larger layers usually require 
more training iterations). 

To obtain the trade–offs between the above mentioned parameters a 
number of experiments were performed, all of which relied on the “1984” MSD 
annotated corpus, which is composed of 118,025 words. Approximately 1/10 
(11,960 words) of the training corpus was kept out for building a test set. The 
baseline accuracy on the test set (i.e. returning the most frequent tag in the 
ambiguity class) is 93.29%. An additional inflectional wordform/MSD lexicon 
composed of approximately 1 million hand–validated entries was also used. 

 

 

Figure 4 – 130 hidden layer network test and train set tagging accuracy as a 

function of the number of iterations 

The first experiment was designed to determine the trade–off between 
the run–time speed and the size of the hidden layer. In this set of experiments the 
tagging accuracy was disregarded. 

Table 5 – Execution time vs. number of neurons on the hidden layer8 

Hidden size Time (ms) Words/sec 

50 1530 7816 
70 1888 6334 
90 2345 5100 
110 2781 4300 
130 3518 3399 

                                              
8 The tests were performed on a Core I7-970 Extreme Edition at 3.2 Ghz, with 16GB of RAM 
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150 5052 2367 
170 5466 2188 
190 6734 1776 
210 7096 1685 
230 8332 1435 
250 9576 1248 
270 10350 1155 
290 11080 1079 
310 12364 967 

 

Because, for a given number of neurons in the hidden layer, the tagging 
speed is independent on the tagging accuracy, several network configurations were 
partially trained (using one iteration and only 1000 training sentences). The first 
network only had 50 neurons in the hidden layer and for the next networks, and 
the hidden layer size was incremented by 20 neurons until it reached 310 neurons. 
The total number of tested networks is 14. After this, the tagging time for the 
1984 test corpus (11,960 words) was measured using each individual model, as an 
average of 3 tagging runs in order to reduce the impact of the operating system 
load on the tagger (Table 5 shows the figures). 

Determining the optimal size of the hidden layer is a very delicate 
subject and there are no perfect solutions, most of them being based on trial and 
error: small–sized hidden layers lead to under–fitting, while large hidden layers 
usually cause over–fitting. Also, because of the trade–off between runtime speed 
and the size of hidden layers, and if runtime speed is an important factor in a 
particular NLP application, then hidden layers with smaller number of neurons 
are preferable, as they surely do not over–fit the data and offer a noticeable speed 
boost. 

Table 6 – Train and test accuracy rates for different hidden layer 

configurations 

hidden layer Train set accuracy Test accuracy 

50 99.18 97.95 
70 99.20 98.02 
90 99.27 98.03 
110 99.29 98.05 
130 99.35 98.12 
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150 99.35 98.09 
170 99.41 98.07 
190 99.40 98.10 
210 99.40 98.21 

 

As shown in Table 5, the runtime speed of our system shows a constant 
decay when we increase the hidden layer size. The same decay can be seen in the 
training speed, only this time by an order of magnitude larger. Because training a 
single network takes a lot of time, this experiment was designed to estimate the 
size of the hidden layer which offers good performance in tagging. To do this, we 
individually trained a number of networks in 30 iterations, using various hidden 
layer configurations (50, 70, 90, 110, 130, 150, 170, 190, and 210 neurons) and 5 
initial random initializations of the weights. For each configuration, we stored the 
accuracy of reproducing the learning data (the tagging of the training corpus) and 
the accuracy on the unseen data (test sets). The results are shown in Table 6. 
Although a hidden layer of 210 neurons did not seem to over–fit the data, the 
experiment was ended, as the training time got significantly longer.  

The next experiment was designed to see how the number of training 
iterations influences the tagging performance of networks with different hidden 
layer configurations. Intuitively, the training process must be stopped when the 
network begins to over–fit the data (i.e. the train set accuracy increases, but the 
test set accuracy drops). Our experiments indicate that this is not always the 
case, as in some situations the continuation of the training process leads to better 
results on the test data (as shown in Figure 4). So, the problem comes to 
determining which is the most stable configuration of the neural network (i.e. 
which hidden unit size will be most likely to return good results on the test set) 
and establish the number of iterations it takes for the system to be trained. To do 
this, the training procedure was run for 100 iterations and for each training 
iteration, the accuracy rate of every individual network on was measured on the 
test set (see Table 7 for the averaged values). As shown, the network 
configuration using 130 neurons on the hidden layer is most likely to produce 
better results on the cross–validation set regardless of the number of iterations.  

Although, some other configurations provided better figures for the 
maximum accuracy, their average accuracy is lower than that of the 130 hidden 
unit network. Other good candidates are the 90 and 110 hidden unit networks, 
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but not the larger valued ones, which display a lower average accuracy and also 
significantly slower tagging speeds.  

The most suitable network configuration for a given task depends on the 
language, MSD encoding size, speed and accuracy requirements.  

Table 7 – Average and maximum accuracy for various hidden layer 

configuration calculated over 100 training iterations on the test set 

Hidden units Avg. acc. Max. acc. St. dev. 

50 97.94 98.37 0.139762 
70 98.03 98.43 0.124996 
90 98.07 98.39 0.134487 
110 98.08 98.45 0.127109 
130 98.14 98.44 0.136072 
150 98.01 98.36 0.143324 
170 97.94 98.36 0.122834 

 

To obtain the accuracy of the system, in the last experiment the 130 
hidden–unit network was used to perform the training/testing procedure on the 
1984 corpus, using 10–fold validation and 30 random initializations. The final 
accuracy was computed as an average between all the accuracy figures measured 
at the end of the training process (after 40 iterations). The first 1/10 of the 1984 
corpus on which we tuned the hyper–parameters was not included in the test 
data, but was used for training. The mean accuracy of the system (98.41%) was 
measured as an average of 270 values (9 test sets x 30 initializations). 

3.3.6 Network pattern analysis 

Using feed–forward neural networks gives the ability to outline what 
input features contribute to the selection of various MSD attribute values in the 
output layer which might help in reducing the tagset and thus, redesigning the 
network topology with beneficial effects both on the speed and accuracy.  

To determine what input features contribute to the selection of certain 
MSD attribute values, one can analyze the weights inside the neural network and 
extract the input → output links that are formed during training. We used the 
network with 130 units on the hidden layer, which was previously trained for 100 
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iterations. Based on the input encoding, the features were divided between 5 
groups (one group for each MSD inside the local context – two previous MSDs, 
current and following two possible MSDs). For a target attribute value (noun, 
gender feminine, gender masculine, etc.) and for each input group, the top 3 input 
values which support the decision of assigning the target value to the attribute 
(features that increase the output value) and the top 3 features which discourage 
this decision (features that decrease the output value) were selected. For clarity, 
the following notations will be used for the groups: 

- G–2: group one – the assigned MSD for the word at position i–2 
- G–1: group two – the assigned MSD for the word at position i–1 
- G0: group three – the possible MSDs for the word at position i 
- G1: group four– the possible MSDs for the word at position i+1 

- G2: group five – the possible MSDs for the word at position i+2 

where i corresponds to the position of the word which is currently being 
tagged. Also, the attribute values are classified into two categories (C): (P) want 

to see (support the decision) and (N) don’t want to see (discourage the decision). 

Table 8 shows partial (G–1 G0 G1) examples of two target attribute values 
(cat=Noun and gender =Feminine) and their corresponding input features used 
for discrimination. 

Table 8 – P/N features for various attribute values. 

Target value Group C Attribute values  

Noun 

G–1 
P 

main (of a verb), article, masculine (gender of a 
noun/adjective 

N 
particle, conjunctive particle, auxiliary (of a verb), 

demonstrative (of a pronoun) 

G0 
P noun, common/proper (of a noun) 

N 
adverb, pronoun, numeral, interrogative/relative (of 

a pronoun) 

G1 
P 

genitive/dative (of a noun/adjective), particle, 
punctuation 

N 
conjunctive particle, strong (of a pronoun), non–
definite (of a noun/adjective), exclamation mark 

Fem. G–1 P main (of a verb), preposition, feminine (of a 
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noun/adjective) 

N 
auxiliary (of a verb), particle, demonstrative (of a 

pronoun) 

G0 
P 

feminine (of a noun/adjective), 
nominative/accusative (of a noun/adjective), past (of 

a verb) 

N 
masculine (of a noun/adjective), auxiliary (of a 

verb), interrogative/relative (of a pronoun), adverb 

G1 
P 

dative/genitive (of a noun/adjective), indicative (of a 
verb), feminine (of a noun/adjective) 

N 
conjunctive particle, future particle, 

nominative/accusative (of a noun/adjective) 
 

For instance, when deciding on whether to give a noun (N) label to 
current position (G0), it can be seen that the neural network has learned some 
interesting dependencies: at position G–1 we find an article (which frequently 
determines a noun) and at the current position it is very important for the word 
being tagged to actually be a common or proper noun (either by lexicon lookup or 
by suffix guessing) and not be an adverb, pronoun or numeral (POSes that 
cannot be found in the typical ambiguity class of a noun). At the next position of 
the target (G1) we also find a noun in genitive or dative, corresponding to a 
frequent construction in Romanian, e.g. “mașina băiatului” being a sequence of 
two nouns, the second at genitive/dative. 

If the neural network outputs the feminine gender to its current MSD, 
one may see that it has actually learned the agreement rules (at least locally): the 
feminine gender is present both before (G–1) the target word as well as after it 
(G1). 

3.3.7 Genetic optimization for the Neural POS tagger 

One of the main problems with neural networks is their tendency for 
over–fitting especially when using a relatively small corpus. In the pattern 
analysis process the feminine gender attribute was positively influenced by the 
feminine gender attribute of a neighboring noun/adjective, but it is also positively 
influenced by the presence of a preposition or a main verb, which, from a 
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linguistic perspective should not happen, and it is most likely an effect of over–
fitting.  

One way to cope with over–fitting is to disable certain links between 
neurons that would otherwise produce this undesired effect. Genetic algorithms 
have been successfully applied for finding optimal network topologies (Schaffer et 
al, 1992; Fischer et al, 1998; Fiszelew et al., 2007). They excel at this task because 
they can explore many different parts of a large solution and narrow down the 
search space in comparison to full–grid optimizations. Starting from an initial 
random population and based on the fitness of each individual, the best suited 
candidates are recombined using different methods. If the fitness and 
recombination methods are properly designed, genetic algorithms have the ability 
to generate new solutions to a problem while also preserving partial ones.  

To assess the performance of genetic algorithms in this particular task, 
three experiments were applied to both Romanian and Czech (see section 3.3.8 for 
results). It is important to mention that while the Romanian tagset contain about 
600 tags, which is considered difficult to handle by standard POS tagging 
methods, the Czech inventory is composed of much larger number of more than 

3000 tags. In all the experiments the multilingual „1984” annotated corpus 
(Romanian and Czech versions) was used, maintaining the 10–fold cross 
validation method for testing. In the first experiment (E1), a custom designed 
topology and in the second (E2) and third (E3) experiments two different genetic 
approaches were used to determine an optimal network topology. As a design 
choice, the neural network used in E2 has a 50 neuron hidden layer because the 
training/testing procedure takes a lot of time on larger networks and also because 
a smaller hidden layer helps avoid having a sparse network given the fact that 
roughly half of the synapses will be disabled by the genetic algorithm. 

Tagging accuracy is measured as an average after 50 training iterations 
and 10 random initializations (for each topology). 

3.3.7.1 Experiment E1: Manually designed simplified network topology 

In the first experiment, a hand–made custom network topology in which 
only attributes belonging to the same class were fully connected. For example, the 
gender attributes (m/f) from all neighboring MSDs were fully connected to a 
variable number of neurons in the hidden layer, which again was connected to the 



38 CHAPTER 3 - Basic natural language processing for text–
to–speech synthesis 

 
neurons used to encode the gender attribute of the output MSD in the output 
layer.  

The motivation behind manually designing this topology was to provide 
another baseline that was as simple as possible, as opposed to the standard fully 
connected network that was previously presented.  

Experiments were performed with a number of different combinations of 
the number of neurons in the hidden layer used for each individual attribute 
group.  Because the purpose was to establish a baseline system, the topology with 
the highest yielding results was selected.  

3.3.7.2 Experiment E2: Unrestricted genetic algorithm generated topology 

In the second experiment (E2) a genetic algorithm was used to find a 
custom network topology. Each individual belonging to a population is 
represented by a binary vector and each value inside this vector is associated to a 
synapse inside the neural network, on any layer. The binary values describing the 
individuals are used to select the state of the synapses (0 – disabled, 1 – enabled). 
During training and testing, the network disregards the disabled synapses. The 
genetic algorithm uses a uniform cross–over probability of 50%, with a 10% 
chance of mutation. Based on the fitness function, the first two best–fit 
individuals are kept in the new population. The following individuals are 
generated from the Cartesian product of the first n–best individuals9. Each pair of 
individuals spawns two children. The accuracy of the tagger on a test set was 
used as a measurement of fitness. 

3.3.7.3 Experiment E3: Restricted genetic algorithm generated topology 

In E2 synapses were randomly enabled or disabled both between the 
input and hidden layer and between the hidden and the output layer. In the third 
experiment (E3), while similar to E2, the genetic algorithm was adapted to take 
into account attribute groups so that we enable or disable all synapses that link 
groups from different layers. As such, an individual is represented by a vector 
whose bits encode whether a specific group in a layer should connect to another 
group in the next layer. 

The size of the hidden layer was fixed to be equal to the size of a MSD 
(110 neurons for Romanian and 135 for Czech), to facilitate the segmentation 

                                              
9 In our experiments we used n=5 
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procedure. Each individual layer was segmented into groups of neurons in 
accordance with the attribute types. The intuition behind E3 was that the links 
between different attribute types should all be either enabled or disabled at a 
time rather than just randomly some of them as is the case for E2. This change 
leads to a reduced number of possible variations that can be generated by the 
genetic algorithm.  

The accuracy was also measured as an average after 50 training 
iterations and 10 random initializations (for each topology). 

3.3.8 Experiment results 

Table 9 summarizes the accuracy figures obtained on Romanian and 
Czech by the four network topologies: the unmodified, fully connected standard 
topology (U), the manually designed simplified topology (E1), the topology 
generated by the unrestricted genetic algorithm (E2) and the topology generated 
by the restricted genetic algorithm (E3). For experiments E2 and E3, the values 
for the first two best–fit individuals I1 and I2 are provided.  

Table 9. Manual and genetic network topology results 

Language Unmodified 
topology 

(U) 

Manual 
topology (E1) 

Unrestricted 
genetic (E2) 

Restricted 
genetic (E3) 

Romanian 97.96% 97.17% I1: 98.17% I1: 98.09% 
I2: 98.12%  I2: 98.05% 

Czech10 90.70% 90.76% I1: 91.69% I1: 91.06% 
I2: 91.64% I2: 90.04% 

 

As shown, the manually designed topology (E1) provides slightly better 
results than the unmodified topology on Czech, but performs worse on Romanian. 
The intuition behind E1 was that local agreements between attribute values 
should only appear between similar attribute groups (e.g. the gender of a noun 
should be influenced by the gender of a neighboring adjective). However, the 

                                              
10 Because of the complexity of the tagset inventory, the accuracy figures for Czech are lower 

than the baseline accuracy for Romanian. The baseline accuracy for Czech is 88%. 
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results obtained in experiment U and E1 on Romanian show that there are 
dependencies across different attribute groups. Somewhat surprisingly, the 
unrestricted genetic algorithm (E2) obtained better candidates than the restricted 
algorithm (E3). To make sure the results are reliable, we repeated experiments E2 
and E3 several times, each time obtaining similar accuracy figures.  

As shown in table 10 besides improving the accuracy of the system, a 
custom network topology also provides increased tagging speeds. The results were 
computed by averaging the time it took to re–label the entire training sets for 
both Romanian and Czech. The experiment was repeated three times in order to 
reduce the effect of system load on tagging speed.  

Table 10. Tagging speeds of different network topologies11 

Topology Romanian Czech 
Words/sec Words/sec 

U 7,183 6,981 
E1 14,366 13,962 

E2–I1 14,659 14,189 

E3–I1 11,402 12,466 

3.3.9 Conclusions  

A new approach for large tagset part–of–speech tagging using neural 
networks was presented. An advantage of using this methodology is that it does 
not require extensive knowledge about the grammar of the target language. When 
building a new MSD tagger for a new language one is only required to provide the 
training data and create an appropriate MSD encoding system and as shown, the 
MSD encoding algorithm is fairly simple and our proposed version works for any 
other MSD compatible encoding, regardless of the language.  

Observing which features do not participate in any decision helps design 
custom topologies for the Neural Network, and provides enhancements in both 
speed and accuracy. The configurable nature of the system allows users to provide 
their own MSD encodings, which permits them to mask certain features that are 
not useful for a given NLP application.  

                                              
11 The tests were performed on a Core I7-970 Extreme Edition at 3.2 Ghz, with 16GB of RAM 
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If one wants to process a large amount of text and is interested only in 

assigning grammatical categories to words, he can use a MSD encoding in which 
he strips off all unnecessary features. Thus, the number of necessary neurons 
would decrease, which assures faster training and tagging. This is of course 
possible in any other tagging approaches, but our framework supports this by 
masking attributes inside the MSD encoding configuration file, without having to 
change anything else in the training corpus. During testing the system only 
verifies if the MSD encodings are identical and the displayed accuracy directly 
reflects the performance of the system on the simplified tagging schema. 

A genetic method for selecting a network configuration was also 
successfully applied showing that custom designed network topologies are able to 
deliver better accuracy figures and faster tagging speeds. 

3.4 Diacritic restoration and word casing12 

The diacritic restoration problem is particularly relevant for the 
Romanian language. Diacritic restoration is one type of spelling correction in 
which the correct diacritical mark of a letter is inserted in a word which would 
otherwise be incorrect, have a different (unintended) meaning or violate different 
syntactic constraints for the language in question. Thus, the decision to insert a 
diacritic is based on the context of the word and, for Romanian, we differentiate 
among the following cases: 

• The word is incorrect according to a predefined (large) lexicon but a 
diacritic version of it exists in the lexicon, e.g. ”mașina” is correct, 
”masina” is not; 

• The word does not possess the correct diacritic form to agree with its 
syntactic constraints, e.g. the indefinite noun in “o mamă” (”mother”) 
is correct but its definite form is not ”o mama” (”the a mother”); 

• The word does not have the intended meaning in context, e.g. the 
word ”fata” means ”the girl” but word ”fața” means ”the face”. 

                                              
12 Section 3.4 is a close adaptation of the author’s paper “A unified corpora-based approach to 

Diacritic Restoration and Word Casing” accepted for publication at the Language Technology 
Conference (LTC) 2013 
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In Romanian (cf. Tufiș and Ceaușu, 2008), on average, every third word 

of an arbitrary text contains at least one diacritical character. In terms of 
characters, more than 8.2% have diacritical signs. 

Word casing is another type of spell–checking in which a word is 
corrected by recapitalizing its letters. It is particularly relevant for part–of–speech 
tagging and machine translation since it reduces a number of ambiguities that 
arise in the processing of incorrectly spelled words (e.g. the misspelled sequence 
“marea neagră” that translates into „large dark” versus the correctly spelled 
sequence „Marea Neagră” which means “Black Sea”).  

Both diacritic restoration and word casing tasks can be viewed as a single 
abstract problem: given a sequence of words (that contains any number of 
incorrect words), attempt to correct it by generating for every word a series of 
possibly correct variants and then choosing one in such a way that the chosen 
sequence maximizes its global probability with respect to a given language model 
(LM). The algorithm that maximizes this probability is a Viterbi–based decoder 
that computes the sequence probability estimates using a trigram HMM LM 
(equation 15). 

argmaxm_…mn oph(;�|;���, ;��#)
q
�$# h(1�|;�)r (15) 

where 

;#…;" represent word alternatives 1#…1" original sequence words h(;�|;���, ;��#) the transition probability from ;���, ;��# to ;� h(1�|;�) the probability of observing word 1� given ;� 
 

By finding the optimal state sequence we actually select the word 
alternatives that are likely to be the correct words based on the used LM. We 
refer to this as surface processing because it relies only on word–forms (words) 
that appear in the text without using any other information (e.g. part–of–speech 
tags, text segmentation, named entity labels, etc.).  

In all our experiments we used the fixed value of 1 for h(1�|;�), because h(1�|;�) = s(tf,mf)s(mf) , where i(1� , ;�) is the number of times word ;� appears with 

the diacritical–stripped form 1� and i(;�) is the number of times ;� appears with 
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other forms, thus making the equation constant. In other words, the system only 
relies on the LM to find the optimal state sequence. This is true for diacritic 
restoration and word–recasing. However, if faced with the task of spelling 
correction using the same settings and access to a corpus of raw sentences and 
their manually corrected versions, it is possible for a single variant vk to be 
associated with more than one incorrect word–form, thus making it mandatory to 
compute the probability of a misspelling. Such a corpus however is hard to obtain 
for English and almost impossible to get for Romanian without involving a time 
and resource consuming process of manually compiling this corpus by manually 
correcting sentences. In practice, spellchecking can be performed without 
requiring the use of such a corpora and it will be later addressed in section 3.5. 

3.4.1 Evaluation 

This section presents our experiments with the proposed system. 
However, we must note that the system’s performance is entirely dependent on 
the LM used. As such, in the next section we present the process of preparing the 
corpus from which the LM is generated from before moving to the experiments 
themselves. 

3.4.1.1  System setup and testing procedure 

We start with an initial Romanian corpus of 5.2M sentences. The corpus 
consists of smaller corpora of different genres and sizes, presented in table 11.  

Table 11. Corpus composition 

Corpus Genre Size (# of lines) 

DGT–TM  Legal 1.7M 
Europarl Legal  400K 
Wikipedia–S Encyclopedia 2.7M 
SETIMES News 100K 
Varied novels Novel 240K 
TED Free speech 156K 

 

DGT–TM13 (Steinberger et al., 2012) is a processed subset of the Aquis 
Communautaire14 meant as a multilingual resource for MT. We used only the 

                                              
13 http://langtech.jrc.it/DGT-TM.html 
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Romanian side of the multilingual parallel Ro–En corpus. Europarl15 (Koehn, 
2005) is a juridical corpus but it has a different register than DGT–TM. 
Wikipedia–S is also a parallel Ro–En corpus obtained by using the Lexacc 
extraction tool (Ștefănescu et al., 2012), from which we used only the Romanian 
side. The SETimes16 resource represents a news corpus. The novels were gathered 
from a free online source17, most of them belonging to the Sci–Fi genre. Finally, 
TED18 is a transcribed speech corpus. 

A series of processing and cleaning steps were applied: 

1. The different corpora were joined into a single file; 

2. Letters ș and ț have been corrected from the old format with a cedilla 
underneath to the standard comma diacritic: ş→ș and Ń→ț. Romanian texts older 
than a few years have this common problem due to Microsoft Windows not using 
Unicode by default until Windows Vista. As such, currently, even official sources 
still use the legacy cedilla diacritics. 

3. The following sentences have been removed: sentences that contain 
less than 3 words; that contain only uppercased letters; that contain no diacritics; 
that contain foreign words (this has been done by forcing all sentences to contain 
at least 80% of words that are at least 3 letters long to exist in a Romanian 
lexicon). This step reduced the number of lines in the corpus by 1.6M, to a total 
of 3.56M, containing 85.6M words. 

4. The corpus was tokenized. 50K sentences have been randomly 
extracted from the corpus and set aside as the reference file; the corpus is further 
referenced as the training corpus/file. The reference file was stripped of diacritics 
and kept as the test file that will be given to the system as input.  

5. At this point we keep the training, reference and test files as final. We 
then lowercase and keep them as well for the lowercase–only tests for the diacritic 
restoration experiment.  

                                                                                                            
14 http://eurovoc.europa.eu/  
15 http://www.statmt.org/europarl/  
16 http://www.setimes.com/ 
17 http://www.gutenberg.org/   
18 http://www.ted.com  
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6. We generate LMs from the train files (both the unmodified and 

lowercased versions) yielding two language models, further referenced in the 
article as the LM and the lowercase LM. The LM contains 1.01M 1–grams, 10.9M 
2–grams and 7,2M 3–grams, while the lowercased LM contains a marginally 
smaller number of ngrams (0.9M,  10.2M and 7.2M 1–,2– and 3–grams). 

The testing procedure is simple: we give the system the test file as input, 
obtaining an output file (either with the diacritics restored or with the words 
cased, or both) that is compared with the reference file. We give two types of 
word accuracy rate (WAR) measurements: all–word and targeted: all–word 
means that from the total number of words we subtract the number of incorrect 
words and we divide everything by the total number of words; targeted means 
that we divide the number of correct words to the number of targeted words 
(depending on the experiment, targeted words will mean words that contain 
diacritics and should be corrected (E1), words that should be case corrected (E2), 
and words that should be diacritic and/or case corrected (E3).  

For the diacritic restoration experiment the input files do not contain 
any diacritics; for the word casing experiment the input file is fully lowercased 
(but contains the original diacritics); for the final experiment the input file will be 
all lowercased and without diacritics. 

3.4.1.2 Experiment 1: Diacritic Restoration 

Diacritic restoration means that given a sentence, words that do not have 
diacritics but should, are correctly transformed into their correct form.  

For example, the sentence “O fata sta in fata.” is corrected to “O fată 
stă în față.” (translation: A girl sits in front). The restoration algorithm must 
make the correct global choice for each word’s alternatives array. The spelling 
alternatives are initially generated from a Romanian lexicon as follows: every 
word from the lexicon has its diacritics removed; for each such word the lexicon is 
scanned again and every word that is a spelling alternative is added into an array 
of alternatives. For example, for word “față” (translation: front or face) after 
diacritics removal of every word in the lexicon (“față” now becomes “fata” (note: 
“fata” is also a valid word in Romanian, meaning the definite form of the noun 
“girl”)) we want to add its spelling alternatives: we scan the lexicon again and 
find “fată” (“a girl”–noun or “to give birth/to calve/to whelp”–verb, used in the 
context of animals giving birth), “fata” (“the girl”), “față” (“face” or “front”), 
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“fața” (the definite form of “față”), “făta” (the root form of the verb “to give 
birth”), etc. In our example, there are two “fata” words in the sentence; each will 
receive the same spelling alternatives list, and the Viterbi decoder helped by the 
LM must choose the correct form for each word. Even if a word has no spelling 
alternatives, the diacritics stripped form is always added, so every word has at 
least one spelling alternative that the Viterbi decoder can choose from. Most 
proper nouns (those that are not in the lexicon), numbers, foreign words, dates, 
etc., have only a single spelling alternative and thus pass the diacritic restoration 
process unaltered. 

We performed two tests: one on the lowercased test file and one on the 
unmodified test file. For each test we used the appropriate LM. Results are 
presented in table 12. The test file has a total of 1,198,539 words, out of which 
265,128 have diacritics (meaning a 22.12%). 

Table 12. Diacritic restoration results  

Test type All–Word WAR Targeted WAR 
Lowercased test 99.31 % 96.89 % 
Unmodified test 99.28 % 96.77 % 

 

We believe that a 96% targeted Word Accuracy Rate (WAR) figure 
makes the system a powerful tool for error correction. A manual evaluation of the 
results has yielded a number of observations:  

- The results can be further improved if we do not consider proper nouns in 
the WAR evaluation. A large number of proper nouns have not been 
“corrected” because they are not present in either the LM or the lexicon. 
For example “puskin” was not corrected to “pușkin” in the sentence 
“lucrarea este inspirată de poemul evgheni oneghin al lui aleksandr puskin”;  

- proper nouns mishandling also introduce another error type: in the 
lowercase test, proper noun “franța” (translation: “France”) was corrected 
to “frântă” (translation: “broken” – adjective, feminine form) as in the 
sentence “cel mai bun pianist din frântă.” 

- a significant fraction of the words that have not been correctly restored is 
due to the fact that they are misspelled: for example, a few of the imported 
novels that are part of the corpus and implicitly from the test file have 
words that are split into syllables at the end of the line as in “mergând în 

direcția opusa , înspre nord”, “opu–sa” was impossible to correct.  
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- a quick overview of the “legitimate” nouns that should have been corrected 

but were not, were actually left unchanged. This is a “desired” behavior for 
specialized tasks as MT, where a part–of–speech tagging preprocessing 
phase would do better to label a word as unknown rather than misclassify it 
and subsequently get translated into a wrong word.  

3.4.1.3 Experiment 2: Word Casing 

Word–casing is the task of determining whether a word should be 
written in lower case, upper case, or capitalized first letter. It is often the case 
where incorrectly written words impede tasks such as Part–of–Speech tagging 
from correctly labeling a word, or MT from being able to find appropriate 
translation equivalents.  

The word casing process differs slightly from the diacritic restoration in 
respect to the alternatives array generated for every word in a sentence. Whereas 
for diacritic restoration the alternatives array was filled with spelling variants of 
the same diacritic–free word, for word casing, the alternatives array is filled with 
exactly three alternatives for every word: the lowercased word, the full 
uppercased word and the first–letter–capitalized word. Ex: for word “franța”, the 
alternatives array will contain “franța”, “FRANȚA” and “Franța”. Here too we 
perform two tests. For the first test each spelling alternative in the alternatives 
array has the same emission probability (test 1: equal emission probability). For 
the second test, for each word, we perform a lexicon lookup: if the word is found 
in the lexicon, nothing changes; if the word is not found, then we increase the 
emission probability of the first letter capitalized spelling alternatives at the 
expense of the other two options (which remain equally probable). The second 
test is named lexicon biased emission probability. The Viterbi decodes remains 
unchanged. In this experiment we use only the unmodified LM. Results are 
presented in table 13. The test file has a total of 149,538 words that should be 
capitalized, a 12.47 % out of all words.  

Table 13 – Word Casing results  

Test type All–Word WAR Targeted WAR 
Equal emission 
probability 

98.78% 92.13% 

Lexicon biased emission 
probability 

99.27% 94.17% 
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As with the diacritic restoration experiment, we can draw a number of 

conclusions: 

- the type of error that is made most of the time is that of leaving the word 
unchanged whereas it should have its first letter capitalized or entirely 
uppercased; 

- there are cases where the correct capitalization is neither first letter or the 
entire word. For example, “mig” should have become “MiG” in sentence 
“…MiG – 29OVT , care este …”. This type of error however is very difficult 
to solve. There are two plausible solutions: 1. Have a large list of named 
entities with non–standard capitalization and 2. Generating all possible 
lowercase/uppercase letter variations. But, solution 1 will never be complete 
and solution 2 is basically exponential; thus, this error type remains for 
future study.  

With this experiment we have a similar problem as with the previous: we 
have no gold standard on which to scale our results against. We can only 
speculate that a 92+ percent WAR is a good result, qualifying our system as 
usable in sensitive tasks such as MT. 

3.4.1.4 Experiment 3: Jointly processing Diacritic Restoration and Word Casing 

The final experiment treats both problems as unitary. The only change 
that is made is in the alternatives array. Whereas in the diacritic restoration task 
the alternatives array would be filled with spelling alternatives and in the word 
casing task with lowercase, uppercase and first capitalized letter, in the joint task 
the alternatives array will be filled with the three capitalization variants for each 
of the spelling alternatives. The test file given as input was lowercased and had 
all diacritics removed. Results are presented in table 14 and table 15 presents the 
WAR differences when compared to experiments E1 and E2.  

Table 14 – Joint task results 

Component test All–Word WAR Targeted WAR 
Diacritic 
Restoration 

99.29 % 96.82 % 

Word Casing 99.02 % 92.19 % 
 

Table 15 – Comparison with previous experiments 
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Experiment comparison All–Word WAR Targeted WAR 

vs. Diacritic Restoration 
(lowercased) 

–0.02 % –0.05 % 

vs. Diacritic Restoration 
(non–lowercased) 

+0.01 % +0.05 % 

vs. Word Casing (lexicon 
biased) 

–0.25 % –1.98 % 

A performance drop is to be expected versus the individual experiments 
due to the fact that the alternatives the Viterbi decoder has to choose from are 
increased three–fold versus the diacritic restoration only, and multiplied by the 
number of spelling alternatives versus the word casing task. We argue that a 
targeted WAR drop of a .05% vs. diacritic restoration only and of almost 2 
percent vs. word casing is perfectly acceptable, given that both tasks are solved in 
a single pass.  

In this experiment the LM used was standardly generated from the 
training corpora without performing lower–casing or stripping diacritics from the 
date.  

Another possible experiment is to assess the diacritic restoration and 
word–casing performance in a sequential approach. However, if we would chain 
the output of one system to the input of the other system we would surely obtain 
worst results since none of the modules has a perfect accuracy.  The only other 
viable alternative is to perform diacritic restoration and word–casing separately 
and then match the cases on the two obtained results.  

3.4.2 Conclusions  

We propose a surface processing system that attempts to solve two 
important problems: diacritic restoration and word casing. At its core, the system 
uses a Viterbi algorithm to select the optimal state sequence from a variable 
number of possible options for each word in a sentence. The options (stored in an 
alternatives array) are generated using a lexicon (for the diacritic restoration 
task) or directly in the code (three capitalization alternatives for every word). 
The Viterbi transition score is given by calculating the perplexity of tri–grams 
(chosen from alternatives arrays) against a previously trained language model.  
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The system is language independent. The only change in its code 

required to adapt it from Romanian to any other language is to specify the target 
language’s diacritics. 

Regarding external resources, the system uses a language model and a 
lexicon. The language model is used to estimate a transition scores for the 
sequential alternatives generated from the lexicon. The use of the system for 
another language thus also requires the existence of a language model and a 
lexicon (though the lexicon is only used in the diacritic restoration task). 

The results we presented here are encouraging. More work on the system, 
as well as possible other NLP techniques applied to it (such as text chunking or 
the usage of large proper noun lists) will certainly increase word accuracy figures 
even more. We couldn’t perform an external evaluation of our system as we could 
not find any reference corpus for these tasks, or, for that matter, obtain any other 
systems (or parts of systems) performing them that did not require extensive 
modifications or specialized resources to make them functional. For example, we 
have found a few websites that allow only a limited number of sentences at a time 
to have their diacritics restored – manually evaluating a few sentences we noted 
that our approach provides significantly better results; there are office plug–ins 
that perform diacritic restoration, but all are closed–source and not easily 
adaptable for automatic testing. 

3.5 Spellchecking 

The spellchecker for Romanian and English is a corpora–based method, 
thoroughly presented in Ştefănescu et al. (2011), which combines three algorithms 
for spellchecking using a voting mechanism and it is designed to produce 
alternative spellings with a decision threshold to replace words within an 
utterance. The three algorithms use similar approaches to spellchecking: 

a. Detect if a word is correctly spelled using dictionaries; 
b. If the word is not found in any lexicon, produce spelling alternatives 

by deleting, replacing or adding letters and spaces; 
c. Re–rank spelling alternatives for the entire utterance using n–gram 

frequencies (see equation 16). 
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The system’s performance was assessed during the Microsoft Speller 

Challenge Competition (placing 4th) in which it obtained an F–score of 97% on 
the TREC DATASET (Qin et al., 2007) (English search queries). 

g(u1) = FV h(1�) + v h(1�, 1��#) + w h(1#, 1��#, 1���)G �(x,x#) 
(16) V, v, w      – weights 

P(wi), P(wi,wi+1) and P(wi,wi+1,wi+2) – n–grams log probabilities 

�(x,x#)– Factor dependent on Levenshtein distance between the original 

query q and the spelling variant q1. 

3.6 Text normalization 

This step is responsible for expanding certain expressions into words, 
before speech synthesis can happen. Arbitrary texts contain numbers, dates, 
abbreviations, acronyms, numbers, etc., which are not suitable for a direct 
conversion into a phonetic representation. 

Text normalization raises a series of challenges mainly because of the 
ambiguities that may occur in selecting the optimal expansion course for each 
type of expression (number, abbreviation, acronym etc.). 

The input text is normalized using a set of handwritten rules and a list of 
well–known abbreviations. Every DOT character is removed from the text (after 
the expansion of abbreviations and expressions) except for sentence boundaries. 
Known abbreviations and some expression types are expanded and other 
(unknown) abbreviations or acronyms are converted to spoken form based on a 
letter by letter rule (eg. „LRC” --> ”lerece”19). The accuracy of this module 
cannot be measured on OOV words, because there is no possible way of 
determining how to expand an abbreviation which is not found within the 
lexicon.  

                                              
19 This example corresponds to a conversion for Romanian 
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3.7 A unified lexical processing framework based on the 

Margin Infused Relaxed Algorithm20 

As previously mentioned the output of the text pre–processing and 
analysis front–end is a set of features that is later used by the speech synthesis 
back–end in its speech synthesis process. The typical feature set is composed of: 
(1) part–of–speech, (2) current syllable, (3) next syllable, (4) previous syllable, (5) 
number of word syllables, (6) syllable position inside the word, (7) syllable 
position inside the utterance, (8) next punctuation mark, (9) previous 
punctuation mark, (10) local phonetic information (surrounding phonemes) and 
(11) other articulatory features. Extrapolating from this feature set, the derived 
basic tasks that a front–end must perform are: (1) syllabification, (2) phonetic 
transcription (grapheme to phoneme conversion – G2P), (3) stress prediction and 
in some cases (4) lemmatization helps in extracting other features which will be 
further addressed in section 7.  

There are various methods proposed in the literature for each of the 
previously mentioned subtasks of TTS. For each of them, a short literature 
review of available methods will be provided and the results obtained with the  
new proposed unified methodology will be compared to current state–of–art 
systems. The previously proposed methods vary from rule–based to data–driven 
and different authors employ different classifiers (in data–driven approaches), 
such as Maximum Entropy Classifiers, Classification and Regression Trees, 
Support Vector Machines (SVM), Structured SVMs, Conditional Random Fields 
(CRFs), etc. While these are all powerful methodologies, the newly introduced 
unified approach uses the Perceptron classifier with the MIRA update learning in 
a sequence labeling setting, because of its robustness and its ability to obtain 
highly accurate results that compare to the ones obtained using CRFs. All the 
lexical processing methods that are proposed share the following similarities: 

- All of them are reformulated as sequence labeling tasks; 
- The same classifier for all the tasks (MIRA); 

                                              
20  Note: section 3.7 is an adaptation of the author’s paper “A unified lexical processing 

framework based on the Margin Infused Relaxed Algorithm. Case study on Romanian Language” 
(Boroş, 2013), which was presented at the Recent Advances in Natural Language Processing 
(RANLP 2013) Conference. 
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- The classification context is based on different and mostly orthographic 

(except for lemmatization and lexical stress prediction, which use the 
morpho–syntactic context) feature sets; 

- The performance is measured in terms of word accuracy rates (WAR); 
- All the tests are reported on OOV words, lookup lexicons can be used for 

known words; 
- All the tests are performed on Romanian; 
- The trial and error process involved in the design of feature set is skipped 

and only the set which yielded the best results is described.  

3.7.1 Syllabification 

Syllabification is the process of decomposing words into their 
phonological units, which is an important requirement in modern approaches to 
TTS synthesis and speech recognition.  

All languages have phonetic rules that govern the syllabification process, 
but it is often the case that these rules are contradicted by etymological 
principles, a fact which complicates the task of automatic syllabification. Phonetic 
transcription or the position of the lexical stress both provide useful information 
for syllabification, but more often than not, G2P and lexical stress are not 
accurate enough on OOV words to help the syllabification process. Also, 
syllabification lexicons are usually larger than G2P lexicons, thus providing more 
training data, which helps the syllabification system obtain better results than 
G2P. Because of the above mentioned reasons, the proposed syllabification 
method is based on purely ortographic features (i.e. the word’s letters). 

Several algorithms have been proposed for the syllabification task divided 
between rule–based and data–driven. While, rule–based methods are centered on 
theoretical aspects of the syllabification problem, data–driven methods are usually 
preferable, since they are language independent and they only require the 
construction of syllabified words lexicons. 

In the following description, the term juncture point is used to denote the 
places where hyphen marks (syllable breaks) are placed within a word. 

The look–up procedure was introduced by Weijters (1991). It constructs 
a table of letter n–grams from the training corpus and uses this table to predict 
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juncture points. Each n–gram contains the focus character (the character that is 
being analyzed to determine if a juncture point should or should not occur after) 
with left and right context, including hyphen marks. When syllabification is 
performed on a new word, the algorithm determines if a focus character should be 
followed by a hyphen, using the majority of similar n–grams.  

The IB1 (Daelemans et al., 1997) algorithm creates n–grams (of 
predetermined size) from word juncture points and stores them into a database. 
When a new word has to be split into syllables, every n–gram around the word’s 
possible junctures is matched against the n–grams already available from the 
training step. N–grams are compared using a distance measure to determine how 
similar two n–grams are to one another.  

Marchand and Damper (2007) introduced Syllabification by Analogy 
(SbA) which follows the principles of the Pronunciation by Analogy (PbA) 
algorithm. It works by applying a “full pattern match” on the input string using 
entries in a dictionary compiled from the training corpora. Marchand and Damper 
also investigate the possibility of using syllabification to improve grapheme to 
phoneme performance on English words.  

Barlett et al. (2008) use structured SVMs to predict tags for letters in a 
given word and compare results obtained using different tagging strategies. Their 
method outperforms the results of the SbA method.  

3.7.1.1 Syllabification with MIRA 

The proposed sequence labeling approach is inspired after Barlett et al. 
(2008). In their paper they experimented with different tagging strategies and 
according to their results, the numbered ONC (onset–nucleus–coda) achieved the 
highest performance. This is why the same tagging strategy was employed for the 
proposed approach. The main difference between this approach and theirs is the 

feature set that was designed and the classifier that was used (MIRA).  

A widely accepted fact is that a syllable is composed of a nucleus vowel 
with or without surrounding consonants which are divided into the onset (the 
consonants preceding the vowel) and the coda (the consonants succeeding the 
vowel) (Breen and Pensalfini, 1999). The ONC tagging strategy assigns a tag to 
every letter of a word based on its role inside the parent syllable. There are three 
types of tags: O–onset, N–nucleus and C–coda. The numbered ONC makes every 
tag unique, inside a syllable, by adding an index to the tag. To exemplify, we will 
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use the syllabification of the Romanian word “avertisment” (English “warning”). 
The correct tag sequence for this word is: N1O1N1C1O1N1C1O1N1C1C2. Determining 
where the junctures appear inside the word is easily done by looking for tag 
sequences that are unacceptable inside the same syllable such as: Ci–Oj, Ni–N1, 
Ci–Nj, Ni–Oj etc. (for whatever indexes i and j). By doing so, we obtain the break 
sequence: N1–O1N1C1–O1N1C1–O1N1C1C2, and with a 1–1 correspondence between 
tags and letters, we get the sequence “a–ver–tis–ment”, which is the correct 
syllabification of the word.  

After iterating through several feature sets we selected the one that 
yielded the highest results: (l–2,l–1,l), (l–3,l–2,l–1,l), (l–4,l–3,l–2,l–1,l), (l,l1,l2), (l,l1,l2,l3), 
(l,l1,l2,l3,l4), (l–1,l,l1), (l–2,l–1,l,l1,l2), where l is used to mark the current letter and li 
is used to denote the letter at relative distance i from the current one. 

3.7.1.2 Experiments and results 

To test this approach, a training corpus consisting of 600K syllabified 
words, compiled from the Romanian Academy Explanatory Dictionary was used. 
The accuracy was measured using 10–fold cross validation and the average value 
was 99.01% on OOV words. To the best of the author’s knowledge, the best 
performing system for Romanian syllabification is presented in Ungurean et al. 
(2011). In their approach, they use Katz–Backoff for determining the most 
probable n–gram letter split sequence using the output of a stochastic search 
algorithm. Their method obtained a maximum accuracy of 97.04% using a 
window of 5 letter n–grams. 

3.7.2 Lemmatization 

Lemmatization is the process of determining a word’s canonical form 
from its inflectional form. It is a technique useful in various natural language 
processing applications such as data–mining and document classification. 
Lemmatization is related to the technique called stemming, which is the process 
of extracting the longest common subsequence from all of a word’s forms.  

In the case of English, the lemmatization process is fairly simple, but for 
highly inflectional languages such as Romanian this process raises a series of 
challenges. There are several approaches to this task, with a trend toward rule–
based transformations applied to the sequence of characters. The best–performing 
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Romanian lemmatizer21 (to the best of the author’s knowledge) is implemented 
after the methodology proposed in Ion (2007). The method builds a lookup table 
storing for each POS tag (named CTAG) the transformations required for word 
form to canonical form conversion. When the method has to predict the lemma of 
a previously unseen word with an associated CTAG (supplied by the POS 
tagging process), it searches the lookup table for the transformation rules of the 
CTAG and applies all of them to the unseen word, thus obtaining a set of 
candidate lemmas from which it probabilistically chooses the most likely one. 

3.7.2.1 Lemmatization with MIRA 

In order to use the MIRA framework, lemmatization was reformulated as 
a sequence labeling task. The labels were designed to encode transformations, 
hence this can be referred to as transform–tagging: 

- ‘*’ – means leave the current letter unchanged 
- ‘_nil_’ – means that the current letter must be removed from the word’s 

lemma 
- ‘_r(<character sequence>) – means that the current letter has to be 

replaced with the character sequence in brackets (<character sequence>).  

To exemplify, the 2nd person, plural verb “îmbrăcați” (English “dressed”) 
will be used. The canonical form of “îmbrăcaŃi” is “îmbrăca” (“to dress”) and the 
letter tag sequence is shown in Table 16. 

Table 16 – Lemmatization example for word "îmbrăcați" 

î m b r ă c a ț i 
* * * * * * * _nil_ _nil_ 

 

Lemmatization has to take into account the information provided by the 
word’s morpho–syntactic–description (MSD) tag (Ion, 2007). This can be 
achieved in one of two ways: (1) by training different models for different MSDs 
or (2) by incorporating the MSD information inside the features that are used. 
The Romanian MSDs inventory is very large (more than 600 MSDs) and 
consequently, the MIRA model obtained by training with MSDs is extremely 
large, difficult to train and use. Tufiş (1999) presents a strategy for coping with 
the large Romanian MSD inventory, in which he eliminates lexicon–recoverable 

                                              
21 http://ws.racai.ro:9191 
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morpho–syntactic attributes from the MSDs. The resulting tagset is much smaller 
and the resulting POS tags are called CTAGs. 

In order to reduce the lemmatization model size, every word’s MSD from 
our training set was converted into a CTAG, based on the above mentioned 
methodology. This reduced the model size about 5 times. 

The context used by the labeler is composed of both lexical and morpho–
syntactic features (CTAGs): (l–2,l–1,l,C), (l–3,l–2,l–1,l,C), (l–4,l–3,l–2,l–1,l,C), (l,l1,l2,C), 
(l,l1,l2,l3,C), (l,l1,l2,l3,l4,C), (l–1,l,l1,C), (l–2,l–1,l,l1,l2,C), where l is used to mark the 
current letter, li is used to denote the letter at relative distance i from the current 
one and C is used to denote the word form’s CTAG. 

3.7.2.2 Experimental results 

The tests were performed using a training corpus composed of 1M words 
from which 10% for each individual CTAG was withheld as the test set. The 
results of the experiments are shown in Table 17. The overall accuracy of 94% 
which is 12% higher than the results presented in Ion (2007). 

In Table 17, all CTAGS beginning with an “N” are nouns, “A” are 
adjectives and “V” are verbs. The best result (100%) is for invariant adjectives 
(“A”) for which the lemma is the word form. This behavior is preserved for all 
CTAGs for which lemma is equal to the word form: NSRN (noun, singular, 
nominative/accusative, non–definite form) with 99.5%, ASN (adjective, singular, 
non–definite form) with 98.95%, etc. At the opposite pole we find words with 
CTAGs that are harder to lemmatize: NPN (noun, plural, non–definite form) 
with 81.51% or NPOY (noun, plural, dative/genitive, definite form) with 83.01% 
due to their root alternation when going from singular (the number of the lemma) 
to plural, e.g. for “stadioanelor” (NPOY, English “of the stadiums”) lemma is 
“stadion” (English “stadium”) where in bold we have the inflectional ending 
corresponding to the CTAG NPOY and in italic we have the root of the word. 

Table 17 – Lemmatization results 

CTAG # of tokens # of errors Accuracy % 

A 16 0 100 
VN 871 47 94.6 

NSON 4223 190 95.5 
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APOY 5078 99 98.05 
NSVN 79 3 96.2 
ASN 6205 65 98.95 

VPSM 1178 77 93.46 
NSOY 6761 279 95.87 
ASRY 5121 67 98.69 
NP 263 35 86.69 

NPRY 6443 884 86.28 
VG 2973 118 96.03 
NN 263 3 98.86 

VPSF 748 15 97.99 
APN 6062 127 97.9 
NSN 2591 6 99.77 
V2 8195 664 91.9 

NPOY 6427 1092 83.01 
V3 7312 629 91.4 

ASON 3030 43 98.58 
VPPM 797 58 92.72 
NSRY 6701 104 98.45 
VPPF 747 15 97.99 

V1 6180 455 92.64 
APRY 5119 95 98.14 
NSRN 4244 19 99.55 
ASOY 5122 59 98.85 
NPN 6615 1223 81.51 

NPVY 28 3 89.29 
NSVY 2225 31 98.61 
ASVY 626 12 98.08 
AN 106 6 94.34 

Overall 112349 6523 94.19 
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3.7.3 Phonetic transcription 

Phonetic transcription (PT; also referred to as grapheme–to–phoneme 
(G2P) or letter–to–sound (L2S) conversion) can be formalized as finding a 
relation between letters and corresponding phonemes, which is not a 
straightforward task and may pose some challenges for languages such as English. 
For Romanian, phonetic transcription rules are relatively simple compared to 
English or French (Burileanu, 1999), but there are several exceptions that need to 
be considered. For the purpose of language independence, data–driven methods 
are preferable as they only require words and their phonetic transcription 
equivalents for training, which are easier to obtain than wide coverage set of 
phonetic transcription rules.  

Several Machine Learning (ML) methods have been proposed for the PT 
task: Black et al. (1998), Jiampojamarn et al. (2008), Pagel et al. (1998), Bisani 
and Ney (2002), Marchand and Damper (2000) and Demberg (2007). 

Jiampojamarn et al. (2008) presented a MIRA based method for L2S 
conversion of words. Their best result on the English CMU lexicon was 71%. 
However, the feature template provided in their paper did not turn out to be 
suitable in our tests. Instead, a different one was developed, which turned out to 
be the most discriminative for Romanian G2P conversion: (l–2,l–1,l), (l–3,l–2,l–1,l), (l–
4,l–3,l–2,l–1,l), (l,l1,l2), (l,l1,l2,l3), (l,l1,l2,l3,l4), (l–1,l,l1), (l–2,l–1,l,l1,l2), (l–2,l–1,l,l1), (l–1, 

l,l1,l2), where l is used to mark the current letter, li is used to denote the letter at 
relative distance i from the current one. 

All the data–driven methods for phonetic transcription require 
alignments between letters and phonemes. For so–called phonetic (or pseudo–
phonetic) languages (e.g. Romanian), the task of grapheme to phoneme alignment 

is significantly easier and more accurate than for many other languages (such as 
English). However, there are several issues, common to several languages. The 
simplest example is that not all words have the same number of phonemes and 
letters and even if this condition is satisfied, it still does not imply a one–to–one 
alignment (e.g. experience – IH K S P IH R IY AH N S, where the letter x 
spawns two phonemes “K” + “S” and the ending “e” is silent; a similar 
phenomenon happens when we phonetically transcribe the word Romanian 
“experienŃă” (experience) into e k s p e r i e n ts @, where again x spawns 
“k”+”s”). Expectation–Maximization (EM) can be used to find one–to–one or 
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many–to–many alignments between letters and phonemes (Black et al., 1998; 
Jiampojamarn et al., 2008; Pagel et al. 1998). Although it is arguable that in the 
case of Romanian such alignments can be easily obtained using simple heuristics, 
EM was used on our training data, to keep the system portable to other languages. 

3.7.3.1 Initial approach to phonetic transcription using a Maximum Entropy 

classifier 

Before the MIRA approach to G2P, there have been several other 
experiments using (1) a custom designed algorithm called Dictionary Lookup or 
Probability Smoothing (DLOPS), (2) a Maximum Entropy (MaxEnt) classifier 
and (3) a cascaded classifier approach for automatic error correction that were 
thoroughly described in Boroş (2013b). Briefly presenting the two other 
approaches is important because they provide relevant information regarding the 
performance of the MIRA approach when applied to Romanian G2P using the 
same lexicon.  

(a) The DLOPS approach used a divide and conquer algorithm for 
approximating the G2P conversion of a sequence of letters either by doing a 
dictionary lookup or by approximating the transcription from sub–units (sub–
groups of letters contained in the initial sequence). During training, the method 
creates a look–up table that contains n–grams from 2 to 8 letters associated with 
possible transcriptions and Maximum–Likelihood Estimation (MLE) probabilities 
of the transcription. Given an input sequence (S) of letters the algorithm performs 
a look–up in the table and either directly returns the list of possible transcriptions 
for known input sequences or compiles a new list by recursively performing the 
same procedure on smaller overlapping units and merging all possible 
transcription variants22 using a smoothing function. The smoothing function and 
the method for choosing where to split the initial sequence were presented in the 
original paper. 

(b) MaxEnt classifiers have been used in the NLP field to solve problems 
such as detecting sentence boundaries (Reynar and Ratnaparkhi, 1997; Agarwal, 

                                              
22 Because the algorithm is applied on overlapping sequences of letters it is 

expected that compatible transcription solutions must also be composed by 
overlapping phonetic sequences. Thus, the algorithm compiles the new list of 
transcription candidates by performing a Cartesian product on overlapping 
phonetic sequences of the adjoined segments. 
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2005), POS tagging (Ratnaparkhi, 1996), text classification (Nigam et al., 1999), 
etc. The principle of MaxEnt (Berger et al., 1996) is to construct a statistical 
prediction model from the training data and assume a uniform distribution for the 
unseen data, thus maximizing the entropy. In the MaxEnt experiment, the 
classifier was trained to predict the phonetic equivalent of every letter inside a 
word using features extracted from the grapheme context (combinations of 
letters) and features extracted from the phonetic context (the phoneme assigned 
to the previous token) 23. 

(c) Noticing systematic errors in the first two approaches a cascaded 
model was used to train another classifier to automatically correct these errors 
based on an extended phonetic feature–set. The principle is to perform phonetic 
transcription in two phases: in the initial phase use any method to produce a 
phonetic transcription of the input sequence; in the second phase the initial 
phonetic transcription is used to create an enhanced feature–set. The enhanced 
feature–set adds a preview of the label of the next letter (that was unavailable 
during the phase) to the context of the current letter, thus learning to perform 
error correction on the initial output. 

The performance and results of these methods will be further addressed 
in the next section. 

3.7.3.2 Experiments and results 

The Romanian training data was extracted from the Romanian Speech 
Synthesis Corpus (RSS) (Stan et al., 2011) and it is comprised of a small number 
of words (8K). However, due to the preponderantly phonetic nature of Romanian, 
this number seems to be sufficient for training a highly accurate G2P data–driven 
method. Using 10–fold cross validation, an accuracy of 96.29% was obtained on 
OOV words, which is comparable to the state–of–the art results (96.99%) of a 
system reported in Ungurean et al. (2011). Additional experiments were made 
using the CMU Dictionary, NetTalk and the UK BEEP for English, BRULEX for 
French and CELEX for German and Dutch. Table 18 shows the results obtained 
using MIRA, DLOPS, MaxEnt and the cascaded model. 

                                              
23 Various combinations of features were tested in a trial and error process; 

the results section will only refer to the best feature-combination. 
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Table 18 – G2P experiments and results using various lexicons and methods 

Method CMU 

dict 

UK 

BEEP 

Net 

Talk 

BRULEX 

 

CELEX  CELEX 

 

Roma

nian 

DLOPS* 57.00 64.07 53.14 79.17 79.27 78.11 85.74 
MaxEnt* 67.22 72.41 68.55 90.99 90.17 90.49 93.29 
DLOPS 
cascaded* 

63.60 67.96 59.70 85.79 86.99 84.89 91.81 

MaxEnt 
cascaded* 

68.29 73.56 69.19 91.68 92.25 91.05 93.34 

Perceptron 71.03 – 64.87 93.89 95.13 92.84 – 
MIRA 71.99 – 67.82 94.51 95.32 93.61 96.29* 

CART 57.80 – – – – 89.38 87 
1–1 Align 60.30 – – 87.00 – 86.60 – 
1–1+CSIF 62.90 – – 86.50 – 87.50 – 
1–1 HMM 62.10 – – 88.20 – 87.60 – 
M–M Align 65.10 – – 90.60 – 91.10 – 
M–M+HMM 65.60 – – 90.90 – 91.40 – 

MeR+A–star 63.81 – – 86.71 – 90.63 – 

Note: the results of our proposed experiments are marked with ‘*’ 

As shown, the MIRA classifier outranks all other methods except the 
cascaded MaxEnt on the NetTalk lexicon, suggesting that it can reliably and 
effortless be used to create G2P models for other languages. 

3.7.4 Lexical stress prediction 

In natural speech certain syllables inside a word have a higher 
prominence compared to neighboring syllables of the same word. When this 
phenomenon occurs, it is said that the syllable is carrying lexical stress. Lexical 
stress prediction is critical in prosody generation for TTS systems as it governs 
the correct pronunciation of diverse words and it is used to discriminate between 
homographs.  

Oancea and Bădulescu (2003) introduced their rule–based method for 
lexical stress prediction on Romanian. They extracted rules and tested their 
method on a lexicon of 4500 words, achieving 94% accuracy. Ungurean et al. 
(2009) used Katz’s back-off smoothing, for lexical stress assignment based on 
letter n–grams. Their algorithm works by calculating the probability of every 
possible combination of stress pattern on an input string. According to their 
evaluation, this method achieves an accuracy of over 99% for OOV words. 
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3.7.4.1 Lexical stress prediction with MIRA 

The tagging strategy used for stress prediction is also inspired after the 
numbered ONC style encoding used for syllabification. In this case a numbered 
tagging strategy was designed, in which: (a) the “BPS” tag was used to label 
letters which appear before the primary lexical stress; (b) “APS” was used on 
letters that appear after the primary lexical stress and (c) “PS” to label the letter 
which carries the primary lexical stress. To exemplify, the labels for the word 
“îmbrăcaŃi” (bolded and underlined a, receives the primary lexical stress) is 
shown in table 19. This type of encoding is available for Romanian, which only 
uses primary lexical stress. For other languages, which support multiple degrees of 
lexical stress, the encoding requires adaptations. 

Table 19 – Lexical stress tagging for the word “îmbrăcaŃi” 

î m b r ă c a ț i 
BPS1 BPS2 BPS3 BPS4 BPS5 BPS6 PS APS1 APS2 

3.7.4.2 Experiments and results 

Franzén and Horne (1997) conducted a study on stress patterns in 
Romanian. They showed that stress is more influenced by derivational affixes 
than by inflectional ones, especially for nouns and verbs. Since the vast majority 
of derivational affixes change the grammatical category of a word, we were 
motivated to split our training data into 5 categories: nouns (N), verbs (V), 
adjectives (A), adverbs (R) and mixed (M). This is where the main difference 
between our approach and other methods can be seen: splitting the training data 

based on the part–of–speech increases the overall accuracy by 3.9% (see Table 
20).  

Table 20 – Lexical stress accuracy 

POS # tokens #  errors Accuracy 

V 11403 42 99.63% 
A 11180 55 99.50% 
R 52 10 80.77% 
N 11060 296 97.32% 

Ignored (M) 33695 1718 94.90% 

Overall 33695 403 98.80% 
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When predicting the primary lexical stress position for a given word, a 

model is chosen based on the POS tag of the given word. If the POS is different 
from the first four categories or if it is unknown (if there is no context available), 
the system uses the mixed model, which is a model created by training on the 
entire lexicon regardless of the POS. 

The lexical feature templates used for lexical stress prediction are 
identical to the ones used for lemmatization. 

3.8 Foreign words in TTS synthesis24 

Besides unseen words which were not present in the training data, the 
OOV class also contains foreign words. Improper handling of such words has a 
negative impact on the TTS synthesis, as applying the same native phonetic 
transcription or syllabification rules on them produces undesirable results. There 
are two ways to handle such words, each requiring them to be first identified as 
foreign. The first strategy is to apply the above mentioned sub–tasks of 
syllabification, phonetic transcription and lexical stress prediction using a custom 
set of rules adapted to the foreign language from which the word originates. 
However, having different sets of rule packages for languages other than the 
native language is considered challenging and cumbersome. The second strategy is 
to use transliteration on these foreign words and to convert them to pseudo–

native words. This facilitates the usage of a single package of native 
rules/learned models for the tasks of phonetic transcription, syllabification and 
lexical stress. 

The difference between the two proposed methods is that the first applies 
phonetic transcription with syllabification and lexical stress rules for the foreign 
language(s) followed by an adaptation at phonetic level between the two 
languages, while the second method uses transliteration to produce a pseudo–

                                              

24Section 3.8 is a close adaptation of the author’s paper “Maximum entropy based 

machine transliteration. Applications and results” presented at Consilr 2013 (Zafiu and 

Boroş, 2013)  
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native word and then uses its native rule sets to reach its final goal (thus not 
requiring training additional methods for syllabification and lexical stress). 

Transliteration between two languages is the process in which the letters 
of a word in the first (source) language are transformed or mapped into letters 
that would correspond to a word in the second (target) language. Transliteration 
was initially introduced in Machine Translation for the task of converting words 
without a corresponding direct translation (e.g. proper names) between languages 
that are highly incompatible at phonetic or orthographic levels. For example, a 
Japanese native speaker cannot distinguish between the English sounds ‘L’ or ‘R’. 

Over the years, several methods for transliteration were introduced, 
mainly focused on languages such as Chinese, Japanese, Korean or Arabic. Knight 
and Graehl (1997) presented a method for transliteration between Japanese and 
English, using finite state transducers. This method was later adapted in Stalls 
and Knight (1998) for bidirectional transliteration between English and Arabic. 
Other methods for transliteration are presented in Jung et al. (2000), Meng et al. 
(2001), Virga and Khudanpur (2003). In their work, Haizhou et al. (2004) 
classifies the above mentioned methods as phonetic approaches to transliteration. 
They propose a new technique that focuses on direct orthographic mapping 
(DOM). Their method is also referred to as n–gram based transliteration. 

In the proposed approach, a LTS inspired model performs transliteration 
instead of phonetic transcription from English to Romanian, because many 
foreign words found in Romanian written texts originate from English. Using 10–
fold validation on a subset of 40K transliterated words from the CMUDICT, the 
measured accuracy was 78% on OOV words. To the author’s knowledge, there is 
no similar study on transliteration between English and Romanian with which to 
compare the results with.  

3.8.1 Detecting which words require transliteration in TTS 

One common problem with both approaches to foreign word adaptation 
for TTS synthesis is detecting when an OOV word is a foreign word and also 
what is its source language. One partial solution to this problem is to use a 
lookup table of word–forms for each foreign language for which the system has 
transliteration rules. Such a list is easier to obtain than a list of fully processed 
words and it can be done by crawling through documents written in specific 
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languages. Any OOV word found by the TTS system has to be checked against 
these precompiled lists and once the word occurs in the lexicon of some language 
it can be transliterated to a native pseudo–word using a specific rule set. It is also 
important to keep a separate word–form list for the native language as well and 
to check if the word is not inside that list, as words in different languages may 
have identical orthographies (e.g. “merge” in Romanian means “walk” but it is 
also a valid English word). This list is important for determining when not to 
apply transliteration. 

There are however cases where a word or a group of words does not 
appear in any lexicon, as in the case of uncommon proper nouns. Based on the 
fact that some orthographic symbols (especially those that have diacritics) or 
groups of symbols are uncommon in certain languages, the assumption that a 
word should be transliterated can arise from testing for such occurrences. For 
example, characters such as ‘y’ or groups like “ck” are very uncommon for 
Romanian.  

The reasons for using the transliteration method instead of custom 
designed methods and lexicons are straight forward: 

• The resources involved in constructing lexicons and building methods 
for custom syllabification and phonetic transcription are far more 
challenging that just building transliteration lexicons. 

• The statistical methods used for generating prosody are trained on 
native words of the language for which the system was designed. 
When using custom syllabification lexicons for foreign words, usually 
unseen syllables would show up and decrease overall performance. 

• One might argue that applying native syllabification and lexical stress 
rules on pseudo–words does not generate the same pronunciations as 
for the word’s native language. However, this does not cause major 
inconveniences, since a non–native speaker could pronounce such 
foreign words similarly, misplacing the lexical stress and making 
adaptations at the phonetic level. 

3.9 Conclusions 

The path from text to speech involves a number of highly complex and 
difficult sub–tasks that in order to provide the necessary support for high quality 
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speech synthesis must be carefully designed and crafted. As explained, the front–
end task of converting the input text into a relevant feature–set for the speech 
synthesizer requires a number of highly interdependent processes such as diacritic 
restoration, word–recasing, text normalization, part–of–speech tagging, 
syllabification, stress prediction, grapheme to phoneme conversion and 
transliteration of foreign words. All these sub–tasks have been thoroughly 
addressed and the solutions either adapted from other languages to Romanian or 
original ones are up to par with the current state–of–the–art methods and 
techniques. 

The work presented in this section only covers the basic pre–processing 
steps involved in TTS and other aspects related to speech and prosody will be 
discussed later in chapter 5. Although basic, these are none the less difficult and 
challenging tasks for TTS synthesis and the rich morphology of Romanian 
complicates most of the processes by generating data sparseness.  

Every component is useful in itself, a fact which is demonstrated later in 
chapter 7, where some of the methods described in this chapter are salvaged in 
building the speech translation prototype. Other uses for sub–modules can be 
easily found: for example (1) the syllabification tool can be exploited by any word 
processor in word–splitting; (2) spellchecking, diacritic restoration and word re–
casing are useful document proofing tools and (3) part–of–speech tagging 
represents a good educational tool for teaching morphological analysis. 
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Chapter 4 

The naturalness and intelligibility of the synthetic voice is a determining 

factor for the overall quality of any TTS synthesis system. This chapter 

offers an overview of today’s major approaches to corpora–based speech 

synthesis methods and introduces the unit–selection baseline system, 

which was designed for the evaluation of the text pre–processing and 

analysis front–end that was previously described in chapter 3 

Digital Signal Processing for Text–

to–speech synthesis 

4.1 An introduction to speech synthesis back–ends 

As previously mentioned, the conversion from text to speech requires a 
NLP front–end that takes the input text and converts it into a feature–based 
representation that is later analyzed and converted into speech by the speech 
synthesis back–end. The speech synthesis back–end is based on a set of ML and 
DSP methods that are intended to model the input of the NLP front–end into a 
collection of attributes specific to signals and speech. Such parameters are usually 
prosody related and they refer to the pitch of the voice (fundamental frequency 
(F0)) and the duration of individual phonemes. In some cases the pitch and 
duration are supplied to the back–end directly by the NLP framework. The DSP 
processing carried out during TTS synthesis is highly dependent on the speech 
synthesis method that is used to generate the actual waveform. 

The first generation of TTS systems relied on rule–based speech synthesis 
and two well–known such speech synthesis methods are (1) articulatory speech 

synthesis and (2) formant speech synthesis.  

In articulatory synthesis, mathematical or physical models are used to 
simulate the mechanics and acoustics of the vocal tract and articulation process, 
involved in the production of human speech. There are two main problematic 
issues with this method: (1) it relies on a deep understanding of how human 
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speech is produced which is good, but this process is extremely complicated and 
still lacks some answers and (2) the models involved in this type of speech 
synthesis are very complex. 

Formant synthesis relies on the source–filter model of the production of 
speech and it explicitly represents voicing, formant resonances and noise, using 
additive synthesis in order to obtain the output waveform.  

Modern speech synthesizers use corpora based speech synthesis methods 
such as concatenative unit–selection speech synthesis and statistical parametric 
speech synthesis. 

4.2 Corpora based speech synthesis methods 

Corpora based methods rely on available recorded speech corpora in 
order to (1) select and use natural speech segments in the synthesis process or (2) 
learn how to model speech parameters in different contexts.  

There are two main approaches to corpora based speech synthesis that 
have become prevalent in recent years: unit selection speech synthesis and 
statistical parametric speech synthesis. 

(1) In the unit selection speech synthesis the idea is to select 
(depending on the context) variable sized natural speech 
units and use them to generate the output waveform through 
a “concatenation” process. 

(2) In the statistical parametric speech synthesis spectral and 
duration patterns based on the context are learned from the 
available corpora. During synthesis, the learned data is used 
to generate new sets of parameters, which are then converted 
into waveforms using various filters. 

Each of the two methods has advantages and disadvantages over the 
other (see table 21 for details) and recently hybrid speech synthesis methods have 
emerged from the idea of combining the two methods in order to take advantage 
of their strengths and reduce their weaknesses (see section 6.2.2 for details). 
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Table 21 – Advantages and disadvantages of unit selection and statistical 

parametric speech synthesis 

Speech 

synthesis 

method 

Advantages Disadvantages 

Unit 

selection 

(a) In best–case scenarios, 
unit selection speech 
synthesis is able to produce 
natural sounding and 
pleasant voices 

(a) Requires a high effort to 
record and label the speech 
corpus; 
(b) High storage requirement, due 
to the fact that it relies on large 
scale speech corpora for selecting 
optimal speech units; 
(b) Regardless of the size of the 
speech corpus, arbitrary text is 
likely to create contexts with a 
small number of usable 
concatenation candidates, in 
which case the resulting voice 
suffers from prosody related issues 
and audio artifacts generated by 
the spectral mismatch of 
consequent units. 

 
Statistical 

parametric 

(a) The model footprint is 
extremely small when 
compared to unit selection 
speech synthesis; 
(b) The quality of the 
resulting voice is constant 
regardless of the input text; 

(a) The resulting voice loses its 
naturalness. 

4.2.1 Unit–selection speech synthesis 

As mentioned earlier, concatenative speech synthesis methods rely on 
pre–recorded speech samples that are concatenated in order to obtain the output 
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waveform. Their major advantage is the ability to obtain natural and pleasant 
sounding voices if they have sufficient data. 

The first generation of concatenative speech synthesis methods used a 
fixed inventory of speech units, initially phonemes (highly problematic at 
synthesis time because of concatenation mismatches), diphones (Black, 1999), 
syllables etc. To avoid some difficulties in the speech database design, modern 
concatenative speech synthesis methods use a variable sized inventory of speech 
segments, hence the name unit selection speech synthesis. 

In unit selection speech synthesis speech units vary from phonemes (as a 
fallback when there is insufficient data available) to diphones, syllables, words 
etc. During synthesis, an optimal sequence of concatenation units is selected in 
order to match the target (prosodic and phonetic) requirements and the 
concatenation context (minimize the spectral mismatch between adjacent units). 
Prosody is controlled either by (a) selecting units that appeared in a similar 
context (the feature set provided by the NLP framework) or (b) explicitly 
modeling target values for pitch and duration and (1) selecting closest units based 
on the distance between the actual and target parameters or (2) using a 
concatenation technique such as pitch synchronous overlap–add (PSOLA) in 
order to control the duration and pitch of the concatenation units and match the 
target values. 

PSOLA is a method used to perform time–scale and pitch modification 
to the speech signal (Moulines and Charpentier, 1990) that has been widely used 
in concatenative speech synthesis systems. The basic principle of this method is to 
express the speech signal as a function of pitch cycles (Huang et al., 2001): �[�] = ∑ 1�[�]� �[� − ��[9]], where �[�] is the speech signal; ��[9] are the epochs 
of the signal, spaced so that the distance between two adjacent epochs is the 
pitch period at that time, expressed in samples; 1�[�] is a window function with 
has the property ∑ 1�z� − ��[9]{ = 1�  (satisfied by the Hanning Window). The 
pitch of the original signal is modified by replacing the initial sequence of 
epochs	��[9], with another sequence of epochs ��[9]	that is calculated with respect 
to the target pitch values and the duration is controlled by removing or repeating 
epochs (see figure 6). One of the main disadvantages of PSOLA is that it requires 
a correct pre–estimation of the pitch epochs and automatic detection of these 
pitch epochs starting from recordings is not sufficiently accurate. 
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Figure 5 – PSOLA pitch and duration modification (Huang et al., 2001) 

4.2.2 Statistical parametric speech synthesis 

In this type of speech synthesis, the speech signal is represented using a 
set of parameters that actually represent the spectral envelope of the speech 
signal, F0 and aperiodic excitation (King, 2010). During training, a statistical 
model is created, in which statistical properties such as mean and variance of 
these parameters is modeled over time based on an input feature–set, which is 
usually generated using the text pre–processing and analysis component of the 
TTS system. During the synthesis process, the previously created model is used to 
generate the speech parameters of unseen data using the input of the NLP 
framework. These parameters are later converted into speech using a vocoder. 
There are several proposed vocoding methods, among which the most widely used 
because of its ability to obtain good results is the Speech Transformation and 
Representation using Adaptive Interpolation of weiGHTed spectrum 
(STRAIGHT) (Kawahara et al., 1999).  

A common choice for modeling these speech parameters is the Hidden 
Markov–Model (HMM), which was initially designed for speech recognition. 
When the model is applied to speech synthesis, each model state generates a set 
of speech parameters used in the synthesis process. The prosodic property of 
duration can be implicitly modeled as the sum of state durations taking into 
account the self–state transitions, but in practice this model is not adequate for 
high quality speech synthesis. Thus, duration is explicitly modeled by adding a 
duration model to the HMM states and creating what is known as Hidden Semi–
Markov–Model (HSMM). 
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4.2.3 Hybrid approaches 

Unit selection and statistical parametric speech synthesis both have their 
strong and weak points that were presented in section 4.2. Thus, recent studies 
have focused on the possibility of joining the two speech synthesis approaches 
into what is known as the hybrid speech synthesis, resulting in different 
approaches such as using HMM speech synthesis to provide better target cost 
calculation for the unit–selection speech synthesis (Kawai et al., 2004; Rouibia 
and Rosec, 2005; Lu et al., 2009; Qian et al., 2010) and combining natural speech 
units with synthetic speech units in order to reduce the discontinuities generated 
by the spectral mismatch at joint points (Pollet and Breen, 2008; Tiomkin et al., 
2010; Guner and Demiroglu, 2012). 

4.3 The unit–selection speech synthesis baseline system 

The lack of freely available resources and tools has hardened the 
development and evaluation of corpora based methods for speech synthesis for 
Romanian. The release of the Romanian Speech Synthesis (RSS) database (Stan 
et al., 2011) has enabled research in this direction and has allowed the testing and 
implementation of a base–line unit–selection speech synthesizer that was designed 
to work with the linguistic analysis provided by the methods and techniques 
presented in chapter 3 in order to provide a better overview on how these 
methods work when integrated in a TTS synthesis system. The speech synthesis 
component uses a Viterbi–style search algorithm used to select the optimal unit 
sequence based on a joint cost function (equations 16, 17 and 18). 

g = V�|}�� + vi|}��	 (16)	�|}�� = ~�� − �~1� + |�� − �|1�	 (17)	
i|}�� = ∆��ii�� + (∆�%)�	 (18)	,where		 g –	 The unit cost �|}�� –	 The target cost i|}�� –	 The concatenation cost �� –	 Target F0 

� –	 F0 value of the unit measured as an 
average of 6 frames �� –	 Target duration 
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 � –	 Actual duration 

∆��ii� –	 Difference of the i–th component between 
the MFCC feature vectors of two adjoined 
units 

∆�% –	 Difference between the average F0 of two 
adjoined units measured over a 6 frames V, v, 1� , 1� –	 Externally defined weights 

 

In order to avoid the unwanted effect of pitch and duration modification 
of the speech signal, a decision threshold is used to select if the units will be 
modified or not by the PSOLA algorithm to match the desired values for pitch 
and duration. If the difference between the target pitch and duration and the 
actual values for these parameters are smaller than that threshold, the units are 
left unchanged. 

4.4 Conclusions 

The quality of speech synthesis is an important factor in any TTS 
synthesis system, a fact proved by the high interest shown toward refining 
various speech synthesis methods. The naturalness and intelligibility of the 
synthetic voice is highly dependent on the speech synthesis method that is used.  

Currently, corpora–based methods are preferable to rule–based and the 
three main classes of data–driven speech synthesizers have been presented in this 
chapter. Each method has its own advantages and disadvantages and preferring 
one method over the other is influenced by multiple factors such as the size and 
quality of the corpora or the exact application in which the TTS system will be 
used. Although hybrid systems have shown promising results regardless of the 
corpora they were trained on and statistical parametric speech synthesis offers a 
good trade–off between overall stability and naturalness, the quality of unit–
selection speech synthesis is still un–matched in certain scenarios. 

In order to obtain a baseline TTS system a highly configurable unit–
selection speech synthesizer that allows the external control off all the parameters 
used in the cost function was described in this chapter and future research efforts 
will be focused on hybrid speech synthesis. 
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A fair comparison between all the speech synthesis methods (unit 

selection, statistical parametric and hybrid) is presented in chapter 6, which also 
presents an evaluation of the unit–selection synthesis system implemented during 
the preparation of this thesis. 
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Chapter 5 

Generating correct prosody is a delicate and complex area of study which, 

at this point, only relies on surface clues to what the voice from the text 

should sound like. Obviously, this is not sufficient because the correct way 

of “saying” things (e.g., proper intonation, pauses, relative phoneme 

durations and word contrast) in real–life scenarios requires a deeper 

understanding of the underlying message and although some commercial 

systems for TTS do obtain surprisingly good results when dealing with 

arbitrary text, this is more likely due to hand–written rules combined with 

the effect of using a large scale recorded speech corpus, while performing 

very little digital signal processing25.In this chapter we approach the issue 

of prosody generation from text, describing various prosody annotation 

system, introducing the newly created RSS–ToBI corpus and offering an 

evaluation of this corpus by using a crowd–sourcing approach 

Speech and prosody 

5.1 What is prosody 

While there is no general agreement on description or representation 
systems for prosody, it is common practice to perceive prosody as a secondary 
communication channel next to the verbal channel. According to Huang et al. 
(2001), from the listener’s point of view, prosody consists in the systematic 
perception and recovery of the speaker’s intentions based on pauses, pitch, 
relative duration and loudness of the voice. 

Before we proceed, we will briefly introduce the idea of prosody and the 
basic acoustic realization of this notion reflected in pitch, duration, pauses and 
loudness of the voice. 

                                              
25 For example, one of the current leading TTS systems named IVONA uses a unit-selection 

algorithm with limited time-scale modifications (Kaszczuk and Osowski, 2009) producing 
remarkably good results in terms of naturalness and intelligibility of the synthetic voice. 
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Pitch is used to encode the speaker’s sentiments or to draw attention to 

certain aspects. In some cases, pitch is influenced by language specific rules such 
as the sense of a word, depending directly on the F0 contour.  

In spoken language, words are continuously pronounced and there is no 
recognizable break between them, unless certain conditions are met. In fact, one 
sub–task of speech recognition is determining the word boundaries after a 
sequence of phonemes was recognized. It is well known that under certain 
circumstances, speakers insert pauses of different lengths between certain words 
in a phrase, and, a speech synthesis system has to be able to pinpoint the location 
of these pauses when generating speech from text. However, their duration is of 
secondary importance to the important aspect of a TTS system which must not 
introduce pauses in wrong positions. Misusing pauses can even result in giving 
different meanings to utterances: 

“nu e aici” → he’s not here 

“nu <pause> e aici” → no, he is here 

Punctuation marks are good clues towards introducing pauses in the 
synthetized voice, but there are a lot of cases where a deeper analysis is required 
for introducing breaks where there is no punctuation present.  

Another aspect of prosody is the phoneme relative duration. There 
are several clues indicating that the duration of phonemes is linked to the pitch of 
the voice, but the relationship is not straight forward and practice shows that for 
pragmatic reasons, pitch and duration should be treated independently (Wang, 
1999). Plumpe and Meredith (1999) convey that a limited context analysis is 
sufficient for obtaining acceptable results in relative duration prediction. 

Both tone and intonation reflect a change in the speaker’s pitch over 
time. The main difference between them is that tones are used to distinguish 
between words, while intonation only expresses message related information such 
as contrast, phrase type etc. Generally speaking, there are four types of 
intonation: rising, falling, dipping (falling followed by rising) and peaking (rising 
followed by falling) intonation. 

While there are certain patterns that can be observed from sentences 
spoken out of the context (isolated phrases) and a set of rules can accomplish 
what is today’s minimal requirement for TTS naturalness, the performance of 
prosody prediction from text is far from the level of a normal human reader. 
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Aspects regarding relative phoneme durations, primary lexical stress and pitch 
accents, based on lexical and syntactic clues are only one side of the problem. 
Limited context analysis offers a good starting point in prosody generation, but to 
fully exploit the role of prosody in message encoding and decoding a better grasp 
on the “encoded information” is essential. A good human speaker is able to 
empathize with both the author and the listener. He is able to draw attention to 
certain aspects of the message by employing pauses, playing with word 
prominence and simulating affective prosody. From the point of view of any 
human listener there is a strong difference between the sentences: 

“I was there.” 

“I WAS there.” 

The contrast of the word “WAS” compared to the surrounding words in 
the second sentence dictates that the sentence is a continuation of a 
communication act between two speakers and that the statement comes in 
conflict with the suggestion of the previously unseen sentence (e.g. “You were not 
there!”). 

Obtaining clues for prosody generation is a complex area of study and 

prosodic elements are hard to predict using superficial text–processing techniques. 

Also, given an utterance, two speakers may choose to employ different patterns 

and even the same speaker is likely to change his preference. Another aspect is 

that if the prosodic channel becomes redundant, based on the verbal component, 

it is sometimes neglected. Even language specific rules such as those that decree 

the phrase type based on acoustic cues are sometimes ignored if the verbal 

context provides enough information for the listener to fully understand the 

message. An effective example is given in Taylor (2009) where the sentence:  

“Is this the way to the bank?” 

does not receive a final tone specific to interrogative sentences because it’s exact 

intent is clear enough without this information (the speaker wants to know if 

this is the way to the market), as opposed to: 

“This is the way to the bank?” 
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which will always receive an interrogative specific pattern because it can easily be 

mistaken for a declarative sentence. 

5.2 Prosody annotation systems 

There are several theories supporting the idea of the existence of a 
prosodic hierarchy inside the utterance (Liberman and Prince 1977; Selkirk, 1984; 
Beckman and Pierrehumbert 1986; Nespor and Vogel 1983; Ladd 1996) and a 
couple of systems proposed for prosody annotation (the International 
Transcription System for Intonation, the TILT intonation model or the Tones 
and Break Indices). Within the hierarchy models, a hierarchical tree is used to 
encode relative strengths of composing units of the utterance, but each theory 
supports different levels and depths of the tree.  

One of the prosody annotation systems is the INternational 
Transcription System for INTonation (INTSINT), which is perceived as the 
prosodic equivalent of the International Phonetic Alphabet (IPA) (Handbook 
IPA, 1999). It was developed and introduced in Hirst (2000). The intonation is 
coded using 8 symbols (T – top, H – higher, U – up stepped, S – same, M – mid, 
D – down stepped, L – lower, B – bottom). The 8 symbols are followed by a set 
of 5 other symbols that are used to encode their timing (‘[’ → initial, ‘<’ → early, 
‘:’ → medial, ‘>’ → late, ‘]’ → final) 

The TILT intonation model was introduced in Taylor (1998) to describe 
boundary tones and pitch accents using a unified set of parameters and to 
facilitate automatic intonation processing and generation. The parameters used in 
the tilt model are:  

- Amplitude (the size of the F0 excursion); 
- Duration; 
- Tilt (a parameter used to describe F0 movement; –1 indicates a pure fall, 

+1 a pure rise, and any other value indicates a combination of rises and 
falls with 0 indicating an equal number of movements in the two 
directions); 

- F0 Position (distance of F0 from the baseline in the middle of the event); 
- Time position (absolute or relative time from the beginning of the utterance 

or the middle of the event). 
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Tones and Breaks Indices (ToBI) (Silverman, 1992) is one of the widely 

accepted standards for prosodic annotation. It was originally designed to 

accommodate the prosodic phenomena specific to American English, but 

adaptations have been made for other languages, as is the case of the J–ToBI 

standard for Japanese (Campbell and Venditti, 1995) or the RoToBI standard for 

Romanian (Jitcă et al., 2012). The ToBI specific break indices (break tear) 

formalize breaks in five classes from 0 to 4. 0 represents the weakest break and 4 

the strongest: 

- 0 clitic boundary; 

- 1 normal word–word boundary; 

- 2 either perceived disjuncture with no intonation effect, or apparent 

intonational boundary but no slowing or other break cues; 

- 3 intermediate phrase. Gets phrase accent, but not terminal tone; 

- 4 full intonation phrase. 

The tone tier of the ToBI standard includes a set of symbols for pitch 

accent tones and final boundary for intermediate phrases and intonational 

phrases. The pitch accent tones are defined as: H*, L*, L+H*, H+!H*, !H*, 

L+!H*, L*+!H*; the final boundary tones for intermediate phrases are: L–, H– 

and the final boundary tones for intonational phrases are: L%, H%. The symbols 

H and L stand for High and Low and a detailed description with usage examples 

is presented in Silverman et al. (1992) and Beckman and Hirschberg (1994) for 

English and Jitcă et al. (2012) for Romanian. 

5.3 Building a prosody annotated Romanian corpus 

As previously presented, corpora based methods have become prevalent 
over rule–based approaches in TTS synthesis because they provide high 
adaptability and language independence. On major drawback is that such 
methods require large–sized corpora for training and, as explained, such corpora 
are not easily attainable for Romanian in comparison to other international 
circulation languages such as English. For the later mentioned language is has 
been shown that, given the availability of a prosodically enhanced corpus, it is 
possible to successfully train ML methods to perform automatic labeling on 
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previously unseen data (Lee and Oh, 1999; Xipeng and Bo, 2000; Sun and 
Applebaum, 2001; etc.).  

The statistical parametric speech synthesis approach could, in theory, 
greatly benefit from the existence of prosody annotated corpora. In practice, most 
systems use rule–based algorithms in their front–ends in order to automatically 
add a simple layer of symbolic prosodic annotations, which is likely to be ignored 
in the context–clustering performed in statistical parametric speech synthesis 
since it does not reflect the actual parameters of speech and it does not help in 
the modeling of these parameters. Therefore it is preferable to have correctly 
annotated speech corpus with prosodic events. 

Because the ToBI annotation standard received a significant attention 
from other research groups, with a focus of extending the standard to suit the 
Romanian language (the Ro–ToBI standard) (Jitcă et al., 2012) and with the 
release of the RSS corpus, a decision was taken to annotate a section of the RSS 
corpus with Ro–ToBI labels (the RSS–ToBI corpus). 

The RSS–ToBI corpus was created using the prompts available from the 
fairytale section of RSS: 1000 sentences totaling 67 minutes of speech. The 
prompts were pre–processed using the methodology proposed in chapter 3, in 
order to add typical local–context information used in TTS synthesis such as 
phonetic transcription, syllabification, stress prediction and part–of–speech (POS) 
tags. 

The prosodic layer was built in two stages. In the first stage a number of 
5 volunteers were asked to listen and label the speech corpus, with the help of a 
custom designed visualization and editing tool. Each of the annotators tagged the 
entire corpus. The initial inter–annotator agreement rate was below 40%; this is 
justifiable as the number of Ro–ToBI tags is large, there are tags that are very 
similar, and the annotators gave preference to one or to a very similar another 
(e.g. H* and L+H*). The second stage was needed because of the low annotator 
agreement level: a single speech expert went through the entire speech corpus, 
and, based on the primary annotations, he manually edited and resolved existing 
conflicts. 

When grouping together both pitch accents and boundary tones, the 
corpus contains a total number of 7022 labels (32 unique) (see figure 6 for highest 
occurring labels). 
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Figure 6 – Highest occurring ToBI labels inside the RSS–ToBI corpus 

 

5.4 Evaluation of the Romanian prosody annotated 

corpus 

This section describes the tests performed to assess if using the ToBI 
annotated corpus as opposed to the same un–annotated corpus has a beneficial 
effect on a TTS system.  

Two statistical parametric speech synthesis models were built using the 
ToBI labeled (system A) and the un–labeled (system B) versions of the RSS 
corpus. A number of 37 sentences were randomly chosen and manually labeled 
from a previously unseen test set consisting of 19 news and 18 novel sentences. 
The test sentences were synthesized using both models and an anonymous 
preference test was conducted on a purpose–built website26. In the preference test, 
anonymous volunteers were presented with speech samples consisting from both 
systems, and, for every individual sentence they were asked to select from a lists 
of 5 preference options: (1) the systems sound identical, (2) system A sounds a 
little better than system B, (3) system A sounds much better than system B, (4) 
System B sounds a little better than system A and (5) system B sounds much 
better than system A. The participants were asked to carefully consider the 

                                              
26 http://rslp.racai.ro/index.php?page=experiment/listening  
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prosodic aspect of the synthetic voices and to try not to be influenced by the 
naturalness of the output.  

  

  
Figure 7 – Preference test results for the two systems 

The evaluation campaign is still ongoing at the time of writing, with 587 
collected answers – a sufficient number of results on which to draw a series of 
conclusions. In 52.81% cases, the RSS–ToBI labeled system was considered better 
than the unlabeled system, in 25.04% of the cases the systems were considered of 
equal quality and in 22.15% cases, the unlabeled system was considered better 
than the labeled one (see figure 7 for detailed results). It is important to note that 
the test respondents are not speech experts. Also, in almost all cases, respondents 
assigned identical scores to the first set of sentences they listened to, and as the 
test progressed they started telling the difference between the synthesized 
sentences; as the respondents were not made to re–listen their initial sentences, 
we speculate that the preference of RSS–ToBI is even higher than the currently 
reported figures, given the current preference distribution.  

Statistically, for a confidence level of 95% with a confidence interval of 5, 
we only needed a sample size of 377 answers. Currently, for our 587 answers, with 
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the worst–case 50% response distribution and a confidence level of 95%, we can 
be certain of the test’s results with a confidence interval of 3.99%. This interval is 
sufficient to statistically prove that the ToBI labeled system is better.  

5.5 Conclusions 

The newly created speech corpus is a valuable asset to the Romanian 
language processing as it provides the means to train and test methods for 
automatically generating prosody form text. By analyzing the preference test 
results one can see that in more than 50% of the cases the RSS–ToBI labeled 
system is preferred over the unlabeled one, while the unlabeled system is only 
preferred in about 20% of the cases. In the cases where most test respondents 
have marked the systems of equal quality, by performing a subjective listening 
test, we noted that there are certain subtle differences that make the ToBI 
system seem slightly better.  

The fact that the ToBI system consistently obtained better scores on 
both sections (news and novel) shows that it is possible to train and test a 
statistical parametric speech synthesis on different genres, provided that the 
prosodic annotations are performed according to the output needs. 

The corpus, as well as the other resources and tools needed to conduct a 
similar experiment are freely available for research purposes either through the 
META–SHARE platform27, the Romanian TTS platform28 or by contacting the 
authors. 

 

                                              
27 http://ws.racai.ro:9191  
28 http://romaniantts.com/new/rssdb/rssdb.php  
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Chapter 6 

During the preparation of this thesis all the proposed methods and 

techniques for text pre–processing and analysis for Romanian text to 

speech synthesis were integrated into an internally developed TTS system, 

referred to as RACAI TTS, which was also e deliverable of the 

METANET4U European Project. This chapter presents a thorough 

evaluation of the system that was conducted during an international TTS 

evaluation campaign 

Evaluation of the RACAI text–

to–speech synthesis system 

6.1 Evaluation methodologies for text–to–speech synthesis 

systems 

The evaluation of TTS systems has always been considered an interesting 
research topic, mainly because having an objective evaluation methodology would 
greatly help improving the TTS process of converting the input text and offering 
the ability to easily test and asses the performance of various associated methods 
and techniques. For these various methods involved in the text’s pre–processing 
and analysis, an objective evaluation is performed by defining the desired output 
and measuring the accuracy of the modules in terms of word accuracy rates, 
phoneme error rates, etc. In fact, this type of evaluation was used throughout 
chapter 3 by measuring the performance of individual methods on OOV words 
using 10–fold cross validation.   

However, the evaluation of the speech synthesizer or of the TTS system 
as a black–box does not share the same exact quantifiability and the most 
obvious reason for this, assuming that it would be possible to compare two speech 
samples and evaluate their similarity analogous to how a human would speak, it 
is impossible to strictly define a desired output. Experience has shown that the 
same speaker is unable to reproduce an utterance twice even if he consistently 
tries to, and on the other side, if he pronounces the same sentence in two sensibly 
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different ways, they would still be considered correct by listeners. Thus, it 
becomes practically impossible to define a standard desired output and measure 
the performance of the TTS system using this method. As an objective evaluation 
is not possible, this challenge is currently overcome through the use of subjective 
evaluation methodologies. These methodologies are usually designed to evaluate 
two major defining properties of TTS systems: naturalness and intelligibility, and 
are carried out through listening tests using human–expert participants.  

6.2 The Blizzard Challenge29 

Blizzard Challenge (Black and Tokuda, 2005) is an evaluation campaign 
designed to provide the tools and resources for evaluating and understanding how 
different speech synthesis methods and techniques work on the same training 
data. It is primarily designed for evaluating corpora based methods such as 
concatenative, statistical parametric and hybrid systems. During the preparation 

phase all participants receive the same speech corpora and they can use any 
lexicon to train their text pre–processing and analysis components. The challenge 
covers multiple languages for which the organisers can collect and provide the 
necessary resources and requires participants to synthesize and submit a number 
of previously unseen sentences. The tests set is traditionally composed of a 
number of semantically unpredictable sentences (SUS) – designed to assess the 

intelligibility of the TTS system and sentences belonging to different domains 
such as news or novels – designed to assess the naturalness of the synthetic 
voice.  

The evaluation of the TTS systems is carried out with the help of 
listening groups than can be (1) volunteers with no background of working with 
TTS systems, (2) speech experts and (3) paid listeners. During the evaluation 

phase, the assessors are asked to listen to sentences randomly chosen from the 
participating systems and answer various questions. At the end of the listening 
tests they have to fill in a questionnaire in order to complete the evaluation 
process. 

                                              
29 Note: Section 6.2 contains relevant sections extracted and adapted from the author’s 

paper “The RACAI Text–to–Speech Synthesis System” (Boroş et al., 2013) presented at the Blizzard 
Challenge Workshop in 2013. 
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The evaluation of the intelligibility of the systems is simply carried out 

by asking the evaluators to listen to a sentence (from the SUS group) and write 
what they hear, thus being able to measure the word–error–rate (WER) based on 
their input and the original SUS. 

Measuring the naturalness of the systems is two–fold: (a) by listening to 
randomly selected sentences, the evaluators are asked to select an overall 
evaluation score (from 1 to 5) and (b) to perform a breakdown of their evaluation 
and select individual scores for (1) the naturalness of the voice, (2) the listening 
effort involved, (3) their impression of the intonation and (4) the placement of 
pauses inside the utterance. 

Additionally to the typical intelligibility and naturalness tests, Blizzard 
Challenge also tries to evaluate how different speech synthesis methods are able 
to reproduce the voice of the original speaker (an important task in the statistical 
parametric approach). This is done using an additional listening test, in which the 
evaluators are asked to listen to a sample from the original speaker and rate how 
closely does the synthetic voice come to this sample by choosing a score from 1 
(sounds like a totally different person) to 5 (it is the same person). 

When continuously listening to speech samples belonging to different 
systems, it is likely that some examples will be very good and some very poor. 
When being presented with a number of good speech samples in a row, the 
listener increases his or hers expectations and starts to penalize any irregularity in 
the synthetic voices, thus creating what is known as the flooring effect for the 
other systems. The opposite phenomenon is called the ceiling effect and is caused 
by listening to very poor speech samples followed by slightly better speech 
samples. This makes the evaluation highly dependent of the order in which the 
samples are played to the listeners. There are two solutions for this problem: (1) 
randomly change the order of the systems and (2) during the listening tests, 
inserted at various points specially chosen speech samples that either sound 
completely unnatural or are extracted from the original speaker in order to reduce 
the ceiling and flooring effects. 

6.2.1 Preparation phase 

In this year’s Blizzard Challenge (2013) there were two tracks to which 
the participants could attend: the English (EH) and the Indian (IH) track. 
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The English track was divided among multiple sub–tracks: the EH1 track 
which was to build a voice using 19 hours of sentence segmented speech from 
audiobooks and the EH2 track which enabled participants to build voice using an 
extended database of more than 300 hours of un–segmented audiobook data (the 
voice in both tracks belonged to an American actress named Catherine Byers).  

The author’s main target of participating in the Blizzard Challenge was 
to assess the performance of the methods and techniques that were described in 
the previous chapters and to see how they adapt to languages other than 
Romanian. In the case of English there are several well–established methods and 
techniques and an abundance of freely–available resources that can be exploited 
in training and building models, thus making the participation in the EH track an 
ideal candidate for evaluation purposes. 

Several steps were taken in order to adapt the models to English:  

(1) The POS tagger was trained using the morpho–syntactic–descriptions 
(MSD) tagset which is fully described in the MULTEXT EAST 
specifications (Erjavec, 2004). We used Orwell’s “1984” corpus for training 
our models, which is a MSD tagged corpus with translations available for 
multiple languages. 

(2) The G2P model was trained using the CMUDict (Weide, 2005) lexicon 
from which we manually edited a few entries and we filtered out all non–
English words using Princeton WordNet (PWN) (Fellbaum, 2010). 

(3) The syllabification model was trained using Webster’s Pocket Dictionary 
(Amsler, 2010) which was automatically pre–processed according to the 
numbered ONC procedure. 

The biggest challenge in this year’s competition was the speech corpora 
preparation, which according to the organizers contained a number of imperfect 
prompts that created problems in the automatic segmentation process. 
Unfortunately we did not have enough time to manually check and correct the 
corpus and, instead, we used a simple statistical method, which, based on the 
duration of individual phonemes and their spectral characteristics determined by 
HTK, attempted to remove incorrect segments. However, the process was not 
precise and we were forced to use a very low rejection threshold which caused us 
to waste ~30% of the corpus. Also, some errors still made it through this filtering 
process and though we detected them while we were synthesizing the sentences 



CHAPTER 6 – Evaluation of the RACAI TTS system 89 

 
for the EH2 track, we did not manually correct these errors because it would have 
been unfair for the evaluation process. 

HTK (Young et al., 2002) was the only external tool used in our voice 
creation process upon which we depended to: 

- Align speech spans to phonemes for each utterance of the corpus; 
- Insert short pauses (‘sp’) in the utterances that will further refine speech 

to phoneme alignment; 
- Filter out utterances for which the speech to phoneme aligner could not 

find a probable–enough alignment, mainly due to the fact that the 
utterance and its prompt were slightly different.  
 
In order to achieve the refined alignments, we performed the following 

steps: 
- Generate (with ‘HDMan’) the phonetic transcription dictionary for all 

words of the corpus using an enriched version of the CMU Dictionary. 
The OOV words found in the speech corpus were automatically 
transcribed using the three different G2P approaches that were previously 
presented in chapter 3: the MIRA approach, the MaxEnt approach and 
the DLOPS approach. All alternative conversions generated were added 
to the lexicon and we later relied on HVite to choose the most probable 
one;  

- Generate an initial phonetic transcription of the speech corpus (with 
‘HLEd’) using the first available pronunciation from the dictionary for 
every word of the corpus; 

- Scanning the phonetically–transcribed corpus from the previous step, 
generate initial 3–state, left–right with no skips HMM models 
(‘monophone HMMs’ in HTK terminology) for all phonemes in the 
inventory (not including the short pause ‘sp’ “phoneme”) (with 
‘HERest’) and re–estimated the initial models 4 times. The pruning 
thresholds specified with the ‘–t’ switch of HERest were ‘250.0 150.0 
1000.0’; 

- Added the short pause ‘sp’ HMM model (initially copied from the silence 
‘sil’ model at the start/end of corpus utterances) and re–estimated all 
HMM models another 4 times using the same parameters of HERest; 

- Re–generate the phonetic transcription (including generation of short 
pauses) of the speech corpus (with ‘HVite’) using the best HMM models 
from the previous step in order to obtain the pronunciations that best 
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match the acoustic data (in case that a word has multiple pronunciations 
in the dictionary); 

- Finally, re–estimating (4 times) the monophone HMMs including short 
pause with the new corpus transcription and generate the alignments with 
HVite giving it the option to output the start/end times for every 
monophone. 

6.2.2 Results 

The parameter set used in the unit selection process was chosen so that 
continuous segments would be preferred over those that met the prosody 
requirements. Tweaking the parameter set was a subjective process and none of 
the members of the RACAI Team are native English speakers. Figure 7 shows the 
Mean Opinion Score (MOS) for the similarity with the original speaker (actual 
value 2.4) calculated using all listeners and all data. Figures 8 and 9 contain the 
naturalness results for the news (2.5) and novel (2.3) sections calculated using the 
scores from all the users. 

	
Figure 8 – RACAI TTS (system J) results (similarity to the original speaker – 

all listeners/all data) 



CHAPTER 6 – Evaluation of the RACAI TTS system 91 

 

 

Figure 9 – RACAI TTS (system J) results (naturalness – all listeners/novel) 

 
Figure 10 – RACAI TTS (system J) results (naturalness – all listeners/news) 

The RACAI entry obtained a high Word Error Rate (WER) of 46%, 
which was not an unexpected result since in our parameter tweaking process we 
favored the naturalness and similarity with the original speaker tests. As 
mentioned earlier, the system supports a decision threshold for the prosodic 
modification of the selected units. Lowering this parameter increased the 
synthesis quality for the Semantically Unpredictable Sentences (SUS), but it 



92 CHAPTER 6 – Evaluation of the RACAI TTS system 
 
resulted in an unnatural sounding voice, which was an undesired effect for the 
other tests in the challenge.  

6.3 Conclusions 

The participation in the Blizzard Challenge 2013 TTS evaluation 
campaign showed that the proposed data–driven methods and techniques are 
scalable and adaptable to other languages. The RACAI entry obtained a MOS 
score similar to all other unit selection speech synthesis systems with no 
statistically relevant differences. A general conclusion that was derived from the 
overall results of all the participating systems, and this is a rephrase from the 
organizers, is that statistical parametric and unit–selection speech synthesis 
systems can be as equally good and as equally bad, depending on the feature sets 
and linguistic analysis provided by the NLP framework but also on other 
implementation details related to the speech synthesizer. The fact that the 
RACAI entry placed among the other systems shows that the methods proposed 
by the author are comparable to state–of–art systems for both English and 
Romanian. The best performing systems in the Blizzard Challenge 2013 used 
hybrid speech synthesis methods, proving that by combining natural units with 
synthetic units one can achieve highly natural and expressive speech and making 
this a priority for the future development of the RACAI TTS system. 
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Chapter 7 

Applications of text–to–speech 

synthesis 

7.1 An overview of TTS applications 

Limited domain speech synthesis has been exploited in numerous 
applications over the years and one obvious example that almost everyone has 
come across is the speech synthesis used in the widely–spread interactive voice 
response systems (IVRs). These systems usually guide the user to navigate 
through well–defined trees of decisions, a process in which he is presented with a 
limited number of options at each step (through the use of voice), moving on to 
the next node incrementally (ex: phone operators’ support lines). Another well–
established application for this type of speech synthesis is the assistive voice 
present in the majority of today’s navigation systems, a voice which has the 
important role of giving directions to the user without requiring his full attention 
on the display screen, thus allowing him to focus on driving. Several other such 
applications of limited domain speech synthesis exist: the talking clock, voice 
announcers in public places, busses or subways, etc.  

The ability to convert written text into spoken language unlocks the 
path to a variety of applications that are intended to provide accessibility, 
assistance or entertainment. In what follows we will briefly address some of them 
and give a detailed presentation of a prototype speech translation system 
developed using the previously introduced tools and resources for TTS synthesis: 

(1) Probably one of the most common and useful application of TTS 
synthesis systems is to provide accessibility for the visually impaired 
or dyslexic people. The first commercial application to provide this 
type of functionality was the Kurzweil reading machine (Kleiner, 
1977). This machine was an integrated system in which an optical 
scanner was used to digitize a page; optical character recognition 
(OCR) software was to convert the image into text and a rule–based 
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speech synthesis system to convert text into speech. This system was 
an impressive achievement in itself and it is interesting to mention 
some of the technical details such as the fact that the G2P module 
used more than 1000 phonetic rules which were used to convert 
unknown word roots into phonemes and that the system performed a 
simple type of syntactic analysis in order to add prosodic information 
to the utterances. Most of today’s computerized systems from 
desktop computers to smart–phones or tablets include such 
accessibility applications, being able to convert images into speech or 
provide voice interactive interfaces; 

(2) A similar application of TTS is to provide communication means for 
deaf persons or for any other reason for which one cannot learn of 
have speaking difficulties. By using TTS systems these people are 
able to communicate with other individuals that do not understand 
sign language for example, or it can be used to transmit messages 
over telephone lines. It must be mentioned that there is a larger class 
of augmentative communication technologies that are called Speech 
Generating Devices (SGDs) which use multiple input methods (not 
just text) in their voice generating process; 

(3) Another application of TTS synthesis is in educational software. 
TTS systems are used to help children learn to read, to improve 
spelling and pronunciation or to help people learn a foreign language 
without the supervision of a teacher. Additionally TTS synthesis 
systems can be used together with ASR and NLP techniques in order 
to provide a student–computer interface similar to a real teacher. 
Such a project is DeepTutor (Rus et al., 2012) which uses TTS for 
presenting lessons and is able to provide an interactive interview–
style exam in which speech synthesis is used for asking questions and 
clarifying ambiguities, while ASR and NLP are used to enable the 
student to answer questions using natural spoken language; 

(4) TTS synthesis finds its usage in any human–computer interaction 
applications. Today’s technological and scientific advances has 
enabled TTS synthesis to replace limited domain speech synthesis in 
almost any device: some navigation systems currently use TTS 
synthesis in order to be able to provide advanced information 
regarding the route to follow, to speak any address name in 
conjunction with standard driving directions (e.g.: “take the second 
exit to Schaffhausen 21913”, as opposed to just simple directions 



 

(like ”take the second exit”); any mobile operating system has its 
own incorporated TTS system and it is able to provide 
functionalities such as e–book and e–mail reading or HCI interfaces; 
smart houses and buildings are growing even “smarter” – new TTS 
modules are designed to provide voice feedback to the user’s 
commands and in some cases they are integrated with the security 
system, being able to make phone calls in emergency cases and notify 
users and/or authorities about occurring or possible future hazards 
by voice. 

Having presented some of the well–known application of TTS, the next 
section will elaborate around a multi–disciplinary application, which involves 
methods and techniques used in ASR, MT and TTS, namely speech to speech 
translation. The work was already introduced in the author’s paper “The RACAI 
Speech Translation System. Challenges of Morphologically Rich Languages” (Dan 
Tufiş, Tiberiu Boroş, Ștefan Daniel Dumitrescu) and the following description will 
focus on the challenges and their solutions involved building a speech translation 
prototype system designed for the Romanian–English bi–directional language 
pair. 

7.2 Building a speech–to–speech translation prototype 

Recent technological advances leading to the popularization and wide–
spread of micro–devices with a computational power considerably higher than 
that of the early 2000’s personal computers accompanied by the standardization 
of Internet access amplified the need for multimodal and multilingual assistive 
technologies. A while back, different research groups envisaged the idea of 
integrating ASR with MT and TTS in order to create what is commonly referred 
to as speech to speech translation. Through such a system, a text spoken in one 
language is automatically recognized, translated and synthesized in another 
language. Back then, there were two main bottlenecks in integrating these 
technologies: (1) technological – the resources and computational power required 
by ASR, TTS and MT were prohibitively expensive for mobile devices then, and 
(2) during the development of the first prototype speech translation system 
(around 1980’s) (Enkvist, 1982), the state of ASR, TTS and MT was not as 
advanced as it is now. 

Currently there are several projects and systems designed for S2S 
translation, such as Speechalator (Waibel et al., 2003) or JANUS–III (Lavie et al., 
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1997), but they mainly centered on English to Arabic, Japanese and Chinese 
language pairs. 

When work was started on the Romanian–English speech translation 
prototype, further referred to as RACAI S2S, two of the main components had 
been already developed and thoroughly tested in multiple evaluation campaigns: 
the TTS system that has been the center of this thesis (methods and techniques 
are described in chapters 3 and 4 and the system evaluation is presented in 
chapter 6) and the MT system which will be briefly introduced. 

7.2.1 An overview of the adjacent technologies 

The RACAI MT system uses a statistical phrase–based decoder built 
using MOSES (Koehn, 2013). One issue with statistical machine translation 
(SMT) systems such as MOSES is that when relying on the classical SMT 
approach based only on word surface–form analysis, highly inflectional languages 
such as Romanian are likely to suffer from the scarcity of training data. Such 
systems build a translation equivalents table composed on sequences of words in 
one language (S), their equivalent translation in the target language (T) with an 
associated set of values that refer to the inverse phrase translation 
probability	h(�|g), inverse lexical weighting	lex(�|g), direct phrase translation 
probability h(g|�) and direct lexical weighting	lex(g|�). The parameters are well 
described and explained in the MOSES user manual (Koehn, 2013). Factored 

translation models are designed to reduce the data–scarcity issue for highly 
inflectional languages by adding to the classical wordform model additional 
information such as the word’s dictionary form (lemma) and part of speech 
information. Using this improved model it becomes possible to perform various 
factor–to–factor translations (ex: lemma/POS in language A → lemma/POS in 
language B) as well as integrating in the translation process the so called 
generation steps in which each lemma/POS pair in the resulting translation is 
used to generate a number of candidate wordforms, out of which the output 
combination of wordforms that maximizes a language–model dependent score is 
chosen.  

In all SMT systems, training is performed using parallel corpora (pairs of 
translated sentences in the source and target language) and such corpora are hard 
to obtain. Some well–known parallel corpora from MT system are DGT 
(Streinberger et al., 2012) and JRC–Acquis (Streinberger et al., 2006). Manually 
collecting or generating additional parallel corpora requires and extensive effort in 



 

terms of time and resources involved in such a process. However, comparable 

corpora are much easier to obtain, say by automatically crawling web–pages that 
are available in multiple languages (e.g. Wikipedia). With this in mind, in a 
recent effort to enhance the collection of parallel corpora from existing freely–
available comparable corpora, the RACAI team developed an automatic method 
for extracting parallel sentences from the later mentioned corpora type. This 
method was successfully tested and implemented in a freely available tool, called 
Lucene–based parallel phrase EXtractor from Comparable Corpora (LEXACC) 
(Ştefănescu et al., 2012). This tool was also used to construct parallel corpora for 
the English–German, English–Romanian and English–Spanish language pairs, 
thus leading to the creation of the Parallel Wiki corpus (Ştefănescu and Ion, 
2013). The validity of this corpus as well as advanced factor translation tests were 
conducted and presented in a number of publications (Tufiş et al., 2013, Boroş et 
al., 2013; Dumitrescu et al., 2013; Dumitrescu et al., 2012) 

Having access to the previously mentioned TTS and MT systems, the 
ASR task was solved by employing the services of an external, freely–available 
ASR system, namely Google ASR. Though a thorough evaluation of Google ASR 
is out of scope for this presentation, a brief introduction to the system is required: 
according to Jaitly et al. (2012), the later mentioned system is trained on a large 
speech corpus using a Sparse Imputation (SI) Gaussian Mixture Model – Hidden 
Markov Model (GMM–HMM) composed of context–dependent tri–phone HMMs 
with a three–state left–to–right topology. The feature set used by the system is 
obtained by performing Perceptual Linear Predictive (PLP) analysis on the input 
signal and transforming the results using Linear Discriminant Analysis (LDA). 
The model is discriminatively trained using boosted maximum–mutual–
information (BMMI). 

7.2.2 Issues in the design and implementation of a speech 

translation system  

As other research has shown (Ney, 1999; Zhang et al., 2004), S2S 
architectures composed by independent ASR, MT and TTS components (see 
figure 11) lacks joint optimality, this is an easy to understand design and it offers 
a good baseline system for future research. However, linking together these 
technologies posed a series of challenges among which are divided within the 
following classes: data–sparseness, module coupling and general processing of 
OOV words.  
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Figure 11 – The S2S system architecture 

The methods used for handling these issues were introduced in the 
previous sections and in what follows a brief review of the tasks and solutions will 
be presented in order to assess the complexity of a S2S translation system: 

Morphologically rich languages, such as Romanian, suffer from data–

sparseness because words have a large number of different forms that are not 
likely to exist in usual training corpora. This requires careful planning and 
preparation of the methods and data before constructing models. To reduce the 
issue of data–sparseness, the RACAI MT system uses the previously discussed 
factored translation models which rely on the word’s lemma and part–of–speech 
information. Both tasks have been thoroughly addressed in chapter 3: see section 
3.3 for challenges and solutions for POS tagging morphologically rich languages 
and section 3.7 for lemmatization of OOV words. 

The processing of OOV words poses a series of challenges for all the sub–
systems involved in S2S. Using an external ASR solution makes this issue 
currently out–of–reach and no solution for OOV words is currently discussable. 
The issue of OOV words in TTS was thoroughly addressed throughout chapter 3 
of the thesis and it is a common practice in MT systems to use transliteration for 
OOV words (Vogel et al., 2003; Habash, 2008; Hermjackob et al., 2008), a task 
which was also presented in this thesis (section 3.8). 

Module coupling challenges are generated by the fact the each of the MT 
and TTS synthesis systems have well defined and rather strict expectations from 
the input data. For example, the MT system requires that the input text is well–
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formed, has diacritics and that the words are correctly cased (i.e. “delta dunării” 
or “delta dunarii” do not have translation equivalents inside the phrase table but 
“Delta Dunării” has – note the casing and diacritics – and is equivalent with 
“Danube Delta”). However, the output of the Google ASR system is all 
lowercased and most words have no diacritics, which involves adding a diacritic 
restoration and word–casing step before the output text from the ASR is 
processed by the MT system (diacritic restoration and word–casing is well 
explained in section 3.4). The MT model is build using the LEXACC Tool to 
automatically extract parallel corpora from the Wikipedia comparable corpora 
and a model built from such data is not always correct. However, the TTS system 
automatically performs diacritic restoration and word–casing on the input text, 
thus assuring that the impact of such errors is reduced. 

7.3 Conclusions 

There are many applications that benefit from exploiting the increased 
accessibility provided by TTS synthesis, which have been thoroughly presented in 
this chapter. A sensible portion of them were designed to assure assistance to the 
elderly or disabled people but, as shown in the previous sections, voice interfaces 
can be used in assisting and providing a better consumer experience to regular 
users as well. 

Currently TTS synthesis systems are part of many platforms and as 
technology progresses they will become more a requirement than an experience 
enhancement tool as users get accustomed to using voice interaction as an input 
method when working with computers. 

A number of typical assistive technologies and applications that are 
based on speech synthesis have been presented in this chapter in order to prove 
the benefit of TTS synthesis. Additionally, a method for integrating MT, TTS 
and ASR to build S2S translation system has been investigated and described and 
an android–based prototype was implemented as proof–of–concept. The working 
prototype (Romanian–English bi–directional speech translation) was part of a 
keynote–demo presentation at the 2013 Speech Technology and Human–
Computer Dialogue Conference in Cluj, Romania (Tufiș et al., 2013) and offers a 
solid baseline system for further development. 
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Chapter 8 

Conclusions 

The thesis covers interesting aspects related to Romanian speech 
synthesis domain and it introduces original approaches to classical NLP–related 
issues of TTS synthesis that show state–of–the art results. 

A fully functional and tested platform for text–to–speech synthesis was 
described in detail and the original methods for handling OOV words in various 
TTS tasks such as syllabification, grapheme to phoneme conversion and stress 
prediction were thoroughly tested. Additionally, aspects regarding the data–
sparseness issue for part–of–speech tagging, the presence of foreign words in texts 
and normalization related issues such as diacritic restoration and spellchecking 
have been fully addressed and original or adapted solutions were provided and 
tested for solving these issues.  

Another major contribution to Romanian TTS synthesis was the 
construction and evaluation of the RSS–ToBI corpus30. The experimental results 
showed a significant quality gain by using this corpus for training in TTS 
synthesis, proving that this corpus is truly an asset for building speech models in 
corpora based methods. 

The proof–of–concept application for speech translation shows the 
viability of the proposed methods and techniques and addresses some module 
coupling of ASR, MT and TTS and data–sparseness related issues, offering a 
general purpose assistive technology on mobile platforms. 

The tools and resources created during the preparation of this thesis can 
be applied for other applications such as: 

- Spellchecking, diacritic restoration and word–recasing offers a generic 
functionality as a text–proofing tool; 

                                              
30  The corpus is available through the META-SHARE platform 

http://ws.racai.ro:9191 



 

- The entire TTS system can be used as a module in other applications, 
similarly to the case of the speech translation system; 

- All the tools are freely provided and they can be used as baselines for 
developing new methods or improving the existing ones for the tasks they 
were designed; 

- The RSS–ToBI corpus can be used in training and testing various 
methods for predicting prosody starting from text or in the development 
of expressive speech synthesis systems. 

The evaluation of the TTS platform during the Blizzard Challenge 
campaign showed that the author’s proposed methods and tools are up to par with 

current state–of–the art systems and has led to the conclusion that a future 
research priority is the development of a hybrid speech synthesis module for the 
TTS platform. Additionally, the creation of the RSS–ToBI corpus will further 
help with the development, adaptation and testing of a method for automatically 
extracting prosodic features from text in order to enable Romanian speech 
synthesis systems provide highly expressive synthetic speech. 

8.1 Personal contributions 

During the PhD program, as a member of RACAI NLP group, I 
developed several tools and applications with competitive performances, as shown 
by the evaluation campaigns in which the NLP group of RACAI participated 
(Microsoft Speller Challenge, International Workshop on Spoken Language 
Translation, Blizzard Challenge, etc.).   

Software development: 

(1) RACAI Spellchecker: HMM Based spellchecking Tool that 
was evaluated during the International Microsoft Speller 
Challenge and placing fourth among a number of 300 systems 
(described in section 3.5). 

(2) The RACAI Neural MSD POS Tagger: part-of-speech 
tagging application that uses Feed Forward Neural Networks 
and genetic optimizations, which is designed to work well on 
morphologically rich languages, such as Romanian (described in 
section 3.3) 

(3) RACAI Diacritic Restoration and Word re-casing tool: 

A HMM based diacritic restoration and word-recasing tool 
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designed for text pre-processing in MT and TTS applications 
(described in section 3.4) 

(4) RACAI SYL: a word syllabification tool bases on the MIRA 
classifier and the ONC labelling strategy designed for TTS and 
general word-processing applications (described in section 3.7.1) 

(5) RACAI G2P: a grapheme to phoneme conversion tool for 
OOV words that is based on the MIRA classifier and GIZA++ 
automatically induced alignments (described in section 3.7.3) 

(6) RACAI STRESS: lexical stress prediction tool for OOV 
words (described in section 3.7.4) 

(7) RACAI LEMMA: a tool designed for the lemmatization of 
OOV words designed for factored MT (described in section 
3.7.2) 

(8) RACAI TRANSLIT: a tool designed for transliterating 
foreign words in Romanian, which is usable for TTS synthesis 
of non-native Romanian words (described in section 3.8) 

(9) RACAI TTS: a multilingual TTS synthesis system that was 
evaluated in the Blizzard Challenge 2013 (chapter 6) and is 
presented throughout the entire thesis (see chapters 3 and 4 for 
the description of the methods and tools) 

(10) RACAI S2S: an Android based speech to speech translation 
system designed for English and Romanian bidirectional 
conversion (described in section 7.2) 

Data collecting and evaluation: 

(1) RSS-ToBI: a prosodically enhanced speech synthesis corpus 
built by manually labelling the fairy-tale section of the RSS 
corpus with RO-ToBI labels (described in section 5.3) 

(2) Evaluation of the RSS-ToBI corpus: assessing the 
contribution of the RSS-ToBI corpus in a crowd-sourcing 
initiative (described in section 5.4) 

(3) Crowd-sourced evaluation and data-collection portals: 

the creation of the Romanian Anonymous Speech Corpus 
(RASC 31 ) and the Romanian Spoken Language Processing 

                                              
31 http://rasc.racai.ro 
 



 

portal (where the evaluation of the RSS-ToBI corpus was 
performed32) 
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10.1 List of abbreviations 

AI - Artificial Intelligence 

ANN - Artificial Neural Networks 

ASR - Automatic Speech Recognition 

CART - Classification And Regression Trees 

CLAWS - 

Constituent Likelihood Automatic 
Word-Tagging System 

CMU - Carnegie Mellon University 

CRF - Conditional Random Field 

DCT - Discrete Cosine Transform 

DE - German 

DFT - Discrete Fourier Transform 

DSP - Digital Signal Processing 

DTFT - Discrete Time Fourier Transform 

EM - Expectation Maximization 

EN - English 

FFN - Feed Forward Neural Networks 

FFT - Fast Fourier Transform 

G2P - Grapheme To Phoneme 

HCI - Human Computer Interaction 

HMM - Hidden Markov Model 

ID3 - Iterative Dichotomiser 3 

IPA - International Phonetic Alphabet 

IT - Italian 

LM - Language Model 

LSTM - Long–Short Term Memory 

LTS - Letter To Sound 

MARY - 

Modular Architecture For Research On 
Speech Synthesis 

MAXENT - Maximum Entropy Classifiers  

MFC - Mel-Frequency Cepstral/Cepstrum 



 

MFCC - Mel Frequency Cepstral Coefficients 

MIRA - Margin Infused Relaxed Algorithm 

ML - Machine Learning 

MLE - Maximum Likelihood Estimation 

MSD - 

Morpho-Syntactic 
Description/Descriptor 

MT  - Machine Translation 

NLP - Natural Language Processing 

ONC - Onset Nucleus Coda 

OOV - Out Of Vocabulary 

PLP - Perceptual Linear Predictive 

POS - Part Of Speech 

PSOLA - Pitch Synchronous Overlap And Add 

PT - Phonetic Transcription 

RACAI  - 

Romanian Academy - Center For 
Artificial Intelligence 

RASTA - 

Relative Spectral Transform - 
Perceptual Linear Prediction 

RBM - Restricted Boltzmann Machine 

RO - Romanian 

RSS - Romanian Speech Synthesis 

RU - Russian 

SAMPA - 

Speech Assessment Methods Phonetic 
Alphabet 

SLP - Spoken Language Processing 

SVM - Support Vector Machine  

TL - Telugu 

TOBI - Tones And Break Indices 

TR  - Turkish 

TTS - Text To Speech 
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