

FONDUL SOCIAL EUROPEAN

 Investeşte în oameni!
Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 – 2013

Proiect POSDRU/6/1.5/S/19 – Pregatirea competitiva a doctoranzilor in domenii prioritare ale societatii bazate pe cunoastere

POLITEHNICA UNIVERSITY OF BUCHAREST, ROMANIA
Faculty of Automatic Control and Computers

Department of Computer Science and Engineering

UNIVERISTE PAUL SABATIER, TOULOUSE, FRANCE
Institut de Recherche en Informatique de Toulouse

Systemes d’Information Generalisés

Senate Decision No. 212 / 30 September 2011

DOCTORAL THESIS

Extragere de informații din surse de date nestructurate și semi-structurate

Information extraction from unstructured and semi-structured sources

Author: Eng. Stefan Daniel DUMITRESCU

DOCTORAL COMMITTEE

President Dumitru POPESCU of Politehnica University of Bucharest
Coordinator-1 Stefan TRAUSAN-MATU of Politehnica University of Bucharest
Coordinator-2 Florence SEDES of Université Paul Sabatier
Referent Luca Dan SERBANATI of Politehnica University of Bucharest
Referent Ion SMEUREANU of Academy of Economic Studies

Bucharest, November 2011

 i

Contents

List of figures .. iii

List of tables .. iv

I. Introduction ...1

II. Information Extraction related tools, methods and techniques6

II.1. Text pre-processing ...6

II.1.1. Tokenization and sentence splitting..6

II.1.2. Stop words ..7

II.1.3. Stemming ..8

II.1.4. Part-of-Speech Tagging ..9

II.2. Machine learning approach and tools ...10

II.2.1. Support Vector Machines ...11

II.2.2. Conditional Random Fields – Linear-chain CRF12

II.3. Parsers ...14

II.4. Coreference resolution ..16

II.5. General purpose corpora ...18

III. Knowledge acquisition and representation ...20

III.1. Ontologies as information repositories ..20

III.1.1. RDF – Resource Description Framework ...21

III.1.2. WordNet ..23

III.1.3. YAGO ...27

III.2. Information Extraction ...28

III.2.1. Open IE – TextRunner ..30

III.2.2. Canonic fact extraction – SOFIE...33

IV. Entity recognition and word sense disambiguation for Information Extraction ...36

IV.1. Word Sense Disambiguation ...36

IV.1.1. Supervised Disambiguation ..38

IV.1.2. Unsupervised Disambiguation ..43

IV.1.3. Knowledge-Based Disambiguation ...46

IV.1.4. WSD Bounds ...51

IV.1.5. Evaluation metrics ...52

IV.2. Named Entity Recognition ..53

 ii

IV.2.1. Classification of NER Approaches ...54

IV.2.2. Named Entity detection and recognition techniques57

IV.2.3. Evaluation Metrics ..59

IV.3. General Named Entity Recognition ...60

V. A General Entity Recognition (GER) System ...63

V.1. System overview ...65

V.1.1. Architecture ..66

V.2. Formalization ..67

V.3. Proposed custom graph algorithm – Linker Algorithm ..70

V.3.1. Description ...71

V.3.2. Complexity analysis ...82

V.3.3. Experiments ..86

V.4. Integrating the Linker Algorithm into the General Entity Recognition System ...94

V.4.1. Module A - NLP Module ...95

V.4.2. Module B - String Entity Processor Module ..96

V.4.3. Module C - Canonic Entity Processor Module ...101

V.5. System evaluation ...109

V.5.1. Evaluation methodology ...109

V.5.2. Evaluation set and standard creation ..110

V.5.3. Testing the system ..114

V.6. Conclusions ...116

VI. A knowledge-based approach for document classification118

VI.1. Introduction ...118

VI.2. Domain Literature Review ..118

VI.3. System Implementation ...119

VI.3.1. Topic list creation ..120

VI.3.2. Processor Module ..122

VI.3.3. Analysis Module ...126

VI.3.4. Evaluator Module ..132

VI.4. Evaluation ..133

VI.5. Conclusion ...135

VII. Conclusions ...137

VIII. References ..144

Appendix ...154

Example run of the proposed GER System ..154

 iii

List of figures

Figure 1. SVM, boundary ... 11

Figure 2. Two equivalent notations of dependency trees ... 15

Figure 3. ENJU deep parser visual example (constituency tree) for the sentence ‘I see what

I eat’ ... 16

Figure 4. Example of synset partial hypernym graph .. 25

Figure 5. TextRunner architecture ... 31

Figure 6. A Hidden Markov Model example ... 55

Figure 7. Logical architecture of the proposed system .. 67

Figure 8. Example of the graph decision problem ... 72

Figure 9. Abstraction of the 3-partite graph in figure 8 ... 72

Figure 10. Pseudocode for CDFS() function .. 74

Figure 11. Pseudocode for addSolution() function .. 76

Figure 12. Pseudocode for isSubSetOrEqual() function .. 76

Figure 13. Pseudocode for canMerge() function .. 76

Figure 14. Pseudocode for the computeScores() function ... 77

Figure 15. Example Result Set Array ... 78

Figure 16. Pseudocode for mergeNonOverlappingRSA() function 79

Figure 17. Pseudocode for createSolutionTree() function ... 80

Figure 18. Worst case scenario tree construction for step 4 merging function 83

Figure 19. Result Set size variation on complete graph ... 87

Figure 20. Algorithm step 2 time variation for complete graph ... 88

Figure 21. Algorithm step 3 time variation for complete graph ... 88

Figure 22. Time measurement when varying the number of edges 89

Figure 23. Result Set Array size when varying the number of edges 89

Figure 24. Dependency tree example ... 100

Figure 25. Connections found between String Entities .. 100

Figure 26. Influence Matrix example ... 101

Figure 27. Pseudocode for obtainInputGraph() function ... 106

Figure 28. Pseudocode for getEdgeWeight() function ... 106

Figure 29. Operational graph .. 107

Figure 30. Input graph derived from the operational graph ... 108

Figure 31. Document classification system architecture .. 119

 iv

List of tables

Table 1. Different semantic similarity measures .. 48

Table 2. Example of tree creation for merging non-overlapped Result Sets 80

Table 3. Algorithm input parameters average grouped by document category 91

Table 4. Algorithm average run-time grouped by document category 93

Table 5. Example of classes YAGO returns for the query about “engine” 97

Table 6. Example table showing the score percentage assigned to each topic based on its

supporter count ... 130

Table 7. Comparison between the proposed system and a standard SVM state-of-the-art

method .. 133

Table 8. A short comparison between overall system performance grouped by topic, before

and after topic tweaking, for 5 out of the 50 total topics .. 134

Chapter I - Introduction Page | 1

I. Introduction

We live in an age of information. Everywhere around us information is embedded in the

devices we wear, the tools we use, the media we watch or hear, in the workplace and at

home. New information is added every second to the interconnected web of devices that is

the Internet.

This exponential data explosion brings with it the availability of knowledge to end-users,

the ability to interconnect, share, create and develop ideas and business together. However,

this explosion also brings what is known as Information Overload, where humans are

bombarded with too much information that actually makes them less productive. The

volume of scientific knowledge has outpaced our ability to manage it. The continuous data

addition without structure and tools to extract what is relevant leads to data intractability

problems.

There are a number of solutions proposed, some proven, some in development and some

only in concept that try to solve this issue. The biggest problem is information classification

and retrieval. A user is spending too much time trying to ask a search engine the correct

question that will minimize the list of results returned and then to manually crawl the

different web pages until he or she finds the desired information.

An obvious solution is better content classification in directories and libraries. However,

standard classification can only go so far, as the user is still required to manually sift

through web pages (even if through a smaller number) to find the information. The

response to a user query should be an actual answer not a list of decreasingly relevant

documents. The solution to this problem is to involve the computer in the search effort,

which means that the computer needs to understand what it is searching and how it relates

to the sea of information available to it. Semantic technologies provide a way for computers

to understand the data they process.

However, for computers to be able to work on such datasets, they must first be extracted

from the current web. Information Extraction (IE) is the task of extracting knowledge from

text, usually in the form of facts (two entities that stand in a relation). This representation of

data is relational in nature, creating complex graphs of relations between entities. Using this

type of knowledge representation, computers can then answer user queries with actual facts

instead of web pages.

The Web is a vast source of information. At the time of writing, a rough estimate of the size

of the web reveals that there are over 15 billion indexed pages1, with thousands more being

indexed every day. Information is added in digital form on an ever-increasing rate, as more

1 http://www.worldwidewebsize.com/

Chapter I - Introduction Page | 2

and more people connect to the Web and as the Web itself creates a framework of tools and

means to add more diverse, heterogeneous data faster.

At first sight, this information appears to be available to anyone and everyone, and, in many

cases, it is, thanks to search engines. Users input their queries in the form of keywords they

consider relevant and are presented with a list of websites that should contain the queried

information. Most queries however are 2 to 3 words in length, allowing search engines to

present from the millions of possible sources a sorted list of ten supposing decreasingly

relevant sites per page. This is (arguably) sufficient for common information queries like

“Ford Focus review” or “seo optimization” (“seo” is short for search engine optimization),

but vastly inefficient for more specific queries like “windshield wipers size for Hyundai

Accent 2003”.

There is no person that has searched for something on the Internet at some point and has not

failed to find it, even with the power of an indexed web of billions of pages to choose from.

Professional needs, local issues, comparative queries, simple or more complex questions

(formulated as such) and so on, can be poorly expressed by a set of keywords. Even if there

might be a way to express such queries in terms of just keywords, the semantic links

between the words are lost as the query is seen as a bag of words, without order. This will

result in poor results, with many false positive hits, displaying websites that contain as most

of the keywords as possible, but do not address the query itself. For example, questions like

“which are the current presidents of EU?”, “Japan’s prime minister before Naoto Kan”,

“highest score of a B-division team in 1980 season in Poland” or even more complex

inquiries stated by simple queries like “cities in which both Scorpions and Stones played”

or “medicine that can be taken without interfering with medicine X in flu cases” will not be

solved by current standard search engines.

For such queries to be considered, there first has to be an understanding of the meaning of

such queries (1
st
 problem), and then the result of such queries should be an actual answer

rather than a list of websites that contain such information (2
nd

 problem). These problems

raise the bar to another level of difficulty. The search is now a search for knowledge instead

of a search for data [1].

Semantic Web

The Semantic Web idea is relatively new, being mentioned for the first time in 1998 by Tim

Berners-Lee2. The Semantic Web translates roughly as a web of Meaning, a web where

computers can understand the meaning of information. The focus shifts from links between

web pages to links between entities, or better said, relationships between entities and entity

properties. The current web is centered on the presentation of information while the

Semantic Web centers on knowledge and its representation model.

2 “Semantic Web Road map”, http://www.w3.org/DesignIssues/Semantic.html

Chapter I - Introduction Page | 3

There is no single standard format to model the Semantic Web. The entities, relationships

and properties can be represented in any of the available maturing or newly developed

formats. The basic model is RDF – Resource Description Framework3 with its associated

RDF Schema (RDFS) and its notations like XML format, N3, Turtle, etc (presented in

section III.1.1). More advanced models include OWL – Web Ontology Language, currently

at its second version OWL24.

Even though the Semantic Web promises a revolution, this revolution will come at a slow

pace. One of the major problems is that all the models and tools above do require

knowledge to develop and use. Even the basic RDF standard was created by people with

academic background, and this means that there is a learning curve to be climbed in order

to use the Semantic Web tools at their true potential. This is why, as opposed to the

explosive growth of the standard web where anybody can publish anything without

requiring any special knowledge, the Semantic Web will grow slowly.

A main research direction focuses now on how to create the necessary standards that are

versatile enough and do not require advanced training to use, and, possibly even more

important, to create the tools that will make the Semantic Web as easy to access and

develop as possible.

While this is a very difficult task, steps have been taken in the right direction. For example,

Microsoft’s EntityCube 5 gathers facts about named entities (people, publications,

organizations, places, etc.); WolframAlpha 6 (computational knowledge engine) links

together domain databases and is able to understand and process queries like “next solar

eclipse” an present a tabular format with results and analysis, it can analyze an electronic

circuit from the query “RLC circuit 10ohm, 12H, 400uF” and many others; Google’s

Squared7 attempts to provide a table with entities as rows and columns as attributes in

response to queries.

Freebase8 and DBpedia9 are two large, free sources of information. Freebase data may be

viewed and edited by anyone and DBpedia dataset can be freely downloaded. Freebase

provides a user friendly interface so that people can define types and relations, and they can

add and search data. DBpedia also provides online access but using a SPARQL10 (an RDF

query language) endpoint. Both also provide data in RDF format.

In early 2010 the DBpedia data set describes 3.4 million entities with over 1 billion facts

while Freebase contains about 12 million topics. One notable community effort is the

3 RDF: http://www.w3.org/TR/rdf-schema/, W3C recommendation on 10 February 2004
4 Approved W3C Recommendation on 27 Oct 2009, http://www.w3.org/TR/owl2-overview/
5 http://entitycube.research.microsoft.com/
6 http://www.wolframalpha.com
7 http://www.google.com/squared/
8 http://www.freebase.com/
9 http://dbpedia.org/
10 http://www.w3.org/TR/rdf-sparql-query/, W3C recommendation on 15 January 2008

Chapter I - Introduction Page | 4

mapping between these two ontologies – at present 2.4 million RDF links have been added

to DBpedia pointing at the corresponding entities in Freebase. There is a noticeable, though

slow, momentum gathering towards these new technologies.

All of the above systems rely on some form of knowledge database and internal knowledge

representation format. Due to the size of the task at hand, almost all of the above systems

(excepting community efforts) use some type of tool to extract information from a source

and then convert it to its representation format.

In the present work we investigate such tools required to create large knowledge

repositories – we look at the Information Extraction (IE) field. Information Extraction is

a type of Information Retrieval that focuses on extracting structured information from

unstructured (free, natural language text) and semi-structured sources (xml, html

documents, etc). The extracted information needs to be in a structured format so that it can

be machine-readable by computers. Structured format has many forms, but the most basic

type is the “fact” or “triple” containing a subject, an object, and a predicate/relation that

links the subject to the object. For example, the natural language statement “Ann is Mary’s

daughter” can be expressed as (Mary, hasDaughter, Ann). This simple example illustrates

the need to identify words and detect the existing relations between them. As such, the field

of Information Extraction is split into several tasks, like entity recognition, relationship

extraction, coreference resolution, etc.

In this thesis we focus especially on the task of entity recognition, which is to identify

words as candidate entities and recognize them in the context of a reference dictionary

(more specifically in the form of an ontology). We consider named entities as well as

common nouns. For named entities the task is to determine initially their type (whether they

are persons, locations, organizations, etc – the Named Entity Recognition task), or the more

difficult attempt to uniquely identify them directly in the reference source (detect more

specific instances like city, country, region, etc, not just simple location). For common

words the task at hand is to identify their senses, considering that words are polysemous

(the task of Word Sense Disambiguation). This identification step (both for named and

common entities) is essential for every Information Extraction system, as it usually

provides a first stepping stone on which to perform more advanced text processing. While

seemingly simple at a first glance, entity identification (with its two sub-tasks: NER and

WSD) is very difficult, as shown by the many attempts over the past two decades summed

up in specialized conferences and workshops like the Message Understanding Conferences,

Sens/SemEval Workshops11, CoNNL12, CLEF13, EACL14 and other important events.

11 http://www.senseval.org/
12 Conference on Computational Natural Language Learning, http://ifarm.nl/signll/conll/
13 Cross-Language Evaluation Forum, http://clef-campaign.org/
14 European Association for Computational Linguistics, http://www.eacl.org

Chapter I - Introduction Page | 5

As a summary of the contents of the thesis, we will start from the basics, investigating the

algorithms, models, tools, the sub-tasks required for any Information Extraction system. We

then look at existing state-of-the-art IE systems like TextRunner15 and SOFIE16. To be able

to create knowledge bases in which to store the information harvested by such systems a

representation method is needed. Thus, the thesis investigates the usefulness of ontologies

in the field of IE by implementing two knowledge-based systems that rely almost

exclusively on unsupervised methods and large, general ontologies.

The first system implemented is designed to perform entity detection and recognition

starting from natural language texts. The approach taken here unifies two major problems

of IE - Word Sense Disambiguation and Named Entity Recognition into a single task -

General Entity Recognition.

The second implemented system is designed to perform text classification. This system also

uses a general, large ontology and a custom semantic distance function to assign scores to

topics and topic concepts based on the ontology graph, and then rank them according to

each topic’s relevance to the analyzed document.

The thesis closes with conclusions on the implemented systems: benefits and disadvantages

of the approach taken, implementation issues and their performance.

15 http://www.cs.washington.edu/research/textrunner/
16 http://www.mpi-inf.mpg.de/yago-naga/

Chapter II - Information Extraction related tools, methods and techniques Page | 6

II. Information Extraction related tools, methods and

techniques

This chapter describes some of the necessary and/or basic tools and techniques needed to

perform any Information Extraction related task. Some of the methods presented are

actually basic tasks that must be performed before any other major task, and are not

exclusively located in the Information Extraction sub-domain, but are used in larger

domains such as NLP (Natural Language Processing), IR (Information Retrieval), Machine

Learning and others.

The first section describes text pre-processing tasks like tokenization or stemming. Then,

two machine learning algorithms are presented as they are essential in IE. Parsers are then

presented as a tool for IE, in which are used to analyze sentences syntactically. After that,

Coreference Resolution is presented as an important task to be done that can sensibly

improve the entity extraction task. Last but not least, annotated generic English corpora are

presented as a basis for many tasks and subtasks, such as training POS Taggers or Parsers,

extracting Information Content values for words and concepts for Word Sense

Disambiguation tasks, etc.

II.1. Text pre-processing

Text pre-processing is usually the first step that has to be done in NLP related tasks. The

original text has different processing algorithms applied to it, in order to extract (or

annotate) needed information about the text, portions of text or individual words.

II.1.1. Tokenization and sentence splitting

Tokenization is the process of splitting a text into individual words, phrases, symbols, or

other meaningful elements called tokens. It is usually the first step applied in any NLP task,

as it outputs a list of separated tokens that normally are fed into further pre-processing tasks

or directly into major NLP tasks.

Tokenization, even though at first sight seems a simple matter of splitting words, quickly

becomes problematic for a sentence like “Mr. John Little (b. 1974), C.T.O. of Apala Labs

(05.2005-11.2008) … “. To begin with, there is a punctuation dot just after the first token

“Mr”. In this case, the tokenizer must include the dot with the token, as opposed to treat the

dot individually as a separated token like it should do with sentence ending dots (sentence

stop). The opening parenthesis should be an individual token, but the dot after “b” should

Chapter II - Information Extraction related tools, methods and techniques Page | 7

be included in “b.”. Then, “C.T.O.” is yet another token, this time containing three

punctuation marks. An even more difficult problem arises on dates: should the tokenizer

split the date into “05”, “.”, “2005” or “05.2005”? As can be seen, tokenization becomes a

more difficult problem, accentuated by the fact that an error in this initial step will be very

costly to detect and correct in later processing stages.

Currently there are several types of tokenization. The simplest way is to use

whitespace/punctuation splitting at the cost of very poor performance. More advanced ways

involve lists of regular expressions providing better performance (which do have the ability

of detecting specific patterns if needed in a domain-text for example). The most successful

way at present is to use statistical/machine learning models such Maximum Entropy or

Hidden Markov Model that are given a tokenized training corpus and learn the language

model on it.

The same issues apply on sentence splitting. Usually sentences end with a punctuation sign,

either a dot, an exclamation or question mark, three dots, etc. However, there are several

punctuation signs inside the sentence itself, and the sentence splitter should recognize them.

The same statistical/machine learning models are also used to split sentences in a text with

good success rates. Even more, to give the tokenizers the clearest input text possible, first

sentence splitting is performed, and then individual sentences are given to the tokenizers.

This ensures that the tokenizer does not get confused with sentence boundaries.

II.1.2. Stop words

Stop words are list of common words that do not hold value in a shallow NLP analysis, and

as such are filtered out in initial stages of text pre-processing. The term “stop word” has

been first attributed to Hans Peter Luhn for describing the removal of useless words in

Information Retrieval tasks.

Lists of stop words are freely available, and can contain anywhere from tens of words to

hundreds of words. Some lists are domain-related. For example, a general list would

contain words such as “a”, “by”, “the” or “she”, while a chat-oriented list would contain

words/strings such as “:)”, “brb” (be right back), “gtg” (got to go) or “lol” (laughing out

loud).

Stop word removal in some applications is actually harmful, for example in tools that

support phrase searching where removal of some linking words would lead a search engine

to skip valid results.

Chapter II - Information Extraction related tools, methods and techniques Page | 8

II.1.3. Stemming

Stemming is the process of reducing derived words to their root form. It is a basic task that

is usually performed at the beginning of most NLP problems, Information Retrieval, etc.

Currently there are many different approaches to stemming, with various performances:

Suffix Stripping Algorithms use a list of rules to transform an inflected word into its root.

For example, the rule “if the word ends with ‘ing’ � remove ‘ing’” will transform “flying”

in “fly”. This algorithm class provides performance as good as the linguist which programs

the rules. However, there are many exceptional cases that must be hand-coded. Suffix

stripping algorithms have average performance.

Lemmatization Algorithms start by determining the part of speech of the word, to try and

apply different rules depending on that part of speech. This approach does depend greatly

on the accuracy of the part of speech identification.

Brute Force Algorithms use a simple mapping between root forms and inflected forms.

The process is very quick; a simple lookup of an inflected word will return its stem.

However, for such a mapping to be held on a host machine, a huge amount of memory (or

other storage form) would be needed. Also, if the inflected form does not exist in the table,

no result will be given. Counting the number of words in the English language, it is

unlikely the manual filling if such a mapping will ever be completed; even automatic filling

with human supervision is too time consuming and the accuracy increase is minimal. On

the other hand, if every inflected form would be input in such a mapping, the stemming

accuracy would be 100%.

Stochastic Algorithms use probabilities to determine the word’s root. This class uses

machine learning algorithms that are trained on existing mappings between inflected and

root forms of words. Stochastic algorithms try to achieve the highest probability of

correctness of the stemmed word, internally using somewhat similar rules like the suffix

stripping and lemmatization algorithms.

An improvement that can be made to stochastic algorithms is to consider the context in

which each inflected word is found. This can be done by considering the words next to the

inflected word – n-grams. An n-gram is a sequence of entities (most often words but can be

syllables or characters) of size n. If n is 1, then we have unigrams. If n is 2 we have bigrams

(most used), for n equals 3 – trigrams, and so on. The improved stochastic algorithm can

look at the words preceding the inflected word (the preceding words are called qualifiers

for the last word) to determine its sense, part of speech, if it is already stemmed, what stem

is more appropriate, whether to strip or substitute suffixes, and so on, based on

probabilities.

Chapter II - Information Extraction related tools, methods and techniques Page | 9

While n-gram analysis increases accuracy by a varying margin, it is argued that the

programming effort involved and even more the training-retraining requirements of the

model make it hard to maintain.

Hybrid Approaches to stemming mean using at least two existing techniques combined.

The techniques can work in parallel or can be used in sequence: for example, a hybrid

algorithm can first try a brute-force method that has mapped only exceptions; if the word is

not found in the mapping, then the algorithm falls back on a standard suffix stripper.

In the present work the Porter Stemmer [2] is used for stemming support.

II.1.4. Part-of-Speech Tagging

Part-of-Speech Tagging (or POST for short) means identifying the part of speech that

corresponds to a given word. POST needs to take into account the context (connected or

related words in the same sentence or paragraph) of the word, considering that the same

word in different contexts belongs to different parts of speech.

There is no standard list of parts of speech; there are 9 basic categories in English: noun,

verb, adverb, pronoun, article, adjective, preposition, conjunction, interjection. There are

however many more sub-categories. We can identify a noun as being a named or a common

noun, being possessive, accusative, having a number, being animate or not, and so on. This

typically increases the number of distinct parts of speech to above 100, different for every

implementation of POS Tagger.

POST is useful in Information Retrieval, Text to Speech (for example the word object can

be either a verb or a noun, depending on the accentuation: object(N) vs. object(V)), Word

Sense Disambiguation and other more complex tasks.

Algorithmically, there are many types of taggers developed. For example, there are Rule-

Based POS taggers [3], Transformation-based taggers (Brill’s tagger [4]), Stochastic

(Probabilistic) taggers [5]. The best accuracy is obtained by stochastic tagging algorithms.

Supervised taggers use machine learning techniques to assign predefined classes to words.

Most often Hidden Markov Models are used. For any chosen model, they need to be trained

on an existing, pre-tagged corpus before being applied in practice (for example, a general-

purpose, POS tagged corpus used for training is the Brown corpus17). After training, a table

of probabilities is generated, based on part of speech sequences. For example, the word

‘the’ is in most cases followed by either a noun or an adjective, and never by a verb. Higher

order models can estimate probabilities of entire sequences, not only pairs of words.

Supervised taggers usually achieve around 95% accuracy.

17 http://khnt.aksis.uib.no/icame/manuals/brown/

Chapter II - Information Extraction related tools, methods and techniques Page | 10

Unsupervised taggers use untagged corpora to derive probability tables. Such taggers

extract similar patterns of words (based on a preset metric or other discriminative criteria)

and infer part of speech categories for them. One notable example for this category is the

Brill Tagger [6].

In the present work Stanford’s POS Tagger [7] is used. It is a hybrid supervised tagger,

using both preceding and following tag contexts via a dependency network representation

and using lexical features like jointly conditioning on multiple consecutive words and

modeling of unknown word features.

II.2. Machine learning approach and tools

Machine learning algorithms can determine by themselves an output, path of action or

result when given an input, based on previous supervised or unsupervised training.

Machine learning is currently a scientific domain in itself.

“A computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E.” [8]

The purpose of machine learning is to learn to act intelligently upon complex inputs. Being

impossible to map every single possible output course of action, machine learning

algorithms must learn to generalize for them to produce an output dependent on any given

input.

While there are many sub-classes and categories of machine learning algorithms, two major

categories stand out:

• Supervised Learning: Decision trees, nearest neighbors, linear classifiers and

kernels, neural networks, linear regression, bagging and boosting, feature selection.

Supervised learning means that training is done on “supervised” data, data that has

previously been annotated with the result the algorithm should output. After

training, the resulting regression function (if the output is continuous) / classifier

function (if the output is discrete) should provide reasonable output given any input

data.

• Unsupervised Learning: Clustering, graphical models, EM, factor analysis,

manifold learning.

Unsupervised learning means giving unlabeled training data to the algorithm to find

interesting patterns, identify classes of related data, etc. Based on this training, the

Chapter II - Information Extraction related tools, methods and techniques Page | 11

algorithm can then process test data, and cluster / assign a new input as belonging to

the most similar class determined in the training phase.

For the rest of this section we will investigate the Support Vector Machines (supervised

algorithm) and the Conditional Random Fields (unsupervised algorithm).

II.2.1. Support Vector Machines

Support Vector Machines (SVMs) are a set of supervised learning methods used for

regression and classification.

A SVM tries to obtain the optimal separation

boundary of two distinct sets in a

multidimensional vector space, independently

on the probabilistic distributions of training

vectors in the sets. The task is to locate the

boundary that is most distant from the vectors

nearest to the boundary in both of the sets. For

nonlinear boundaries, the introduction of a

kernel method is equivalent to a transformation

of the vector space.

The task of this class of algorithms is to detect and exploit complex patterns in data.

Typical problems are how to represent complex patterns (computational problem) and how

to exclude unstable patterns (statistical problem).

Input is given in the form of data instances. Each instance is an n-dimensional vector.

� = 	����, ���	|	�� ∈ ��, ��	 ∈ 	 	−1,1
�
���

�
 (1)

D is the training set, xi is the i-th dimensional value and ci is the class that the vector

belongs to. The n-1 dimensional hyperplane that best divides the data instances is expressed

as:

��� +
 = 0 (2)

where w is the weight coefficient vector and b is the bias term. The margin is the distance

between a training vector xi and the boundary:

�	�
����

‖	‖
 (3)

Introducing a restriction to this expression, we have:

Figure 1. SVM, boundary

Chapter II - Information Extraction related tools, methods and techniques Page | 12

 ����|���� +
| = 1 (4)

The optimal boundary maximizes the minimum of (3). Considering (4), minimization for:

 ������ +
� ≥ 1 (5)

The optimization is done using Lagrange’s indeterminate coefficient method. Given:

���,
,��� = �

�
��� − ∑ ���������� +
� − 1�� (6)

where αi ≥ 0 are indeterminate coefficients. The partial derivatives are zero if w and b take

optimal values:

��

�	
= � − 	∑ ������						���					 ��

�	� = 	−∑ ��� �� (7)

Setting the derivatives to zero, extracting w, rewriting and substituting:

���,
,��� = 	− �

�
∑ ∑ ���� ����������� + ∑ ��� (8)

The problem is reduced to a quadratic programming problem, maximizing the right-hand

side term while considering that the sum (αiyi) equals 0, for all αi ≥ 0.

The quadratic problem is well known and applications exist that can solve it efficiently.

Another note to make is that SVM splits the data into two classes. If we have more than two

output classes, then a more complex technique is applied, running the model iteratively.

The SVM algorithm is implemented in several free and commercial packages, such as

WEKA18 , LIBSVM19, SVM-Light20 and others. Because of its versatility and ease of usage,

in the present work WEKA [9] will be used for SVM support.

II.2.2. Conditional Random Fields – Linear-chain CRF

The problem of labeling sequences to a set of observations is often found in many NLP

tasks (ex: labeling words in sentences with parts of speech, labeling words with chunk

identifiers, etc.) Usually, either Hidden Markov Models (HMMs) [10] or finite-state

machines are used.

Hidden Markov Models define a joint probability distribution p(X,Y) where X is a random

variable ranging over observation sequences while Y ranges over the label sequences. This

form of generative model cannot iterate over all possible observation sequences (as it needs

18 http://www.cs.waikato.ac.nz/ml/weka/
19 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
20 http://svmlight.joachims.org/

Chapter II - Information Extraction related tools, methods and techniques Page | 13

to) if independence assumptions are not made beforehand. Usually, it is assumed that an

observation depends only on the label at a point in time, even though in reality observations

depend on multiple levels and even depend on previous labels in time. A generative model

like the HMM directly describes how the inputs are ‘generated’ by the outputs

probabilistically.

The answer to this problem is to create a model that defines the conditional probability as

p(Y|x) over label sequences given a certain observation sequence (x) instead of a joint

distribution over observation and label sequences. Another way of saying is that while

HMMs are generative models (modeling p(Y,X)), discriminative models like CRFs model

p(Y|X) that does not need to model p(X) which is usually intractable if it contains many

highly dependent features. The main advantage of discriminative modeling is that it is

better adapted to include many overlapping features.

A Conditional Random Field (CRF) is a discriminative model, represented as an undirected

graphical model where nodes are random variables and the links between nodes are

dependencies. A CRF defines a log-linear distribution over label sequences for a certain

observation sequence [11]. Linear-chain CRFs relate to HMMs in that they are used for

many of the same problems, but are more permissive about input and output assumptions.

A CRF can be viewed as a HMM with general feature function that do not use necessarily

constant probabilities to model the emissions and transitions. Furthermore, CRFs can

contain an arbitrary number of feature functions and these feature functions may not be

defined as probabilities.

If we start from a HMM, introducing feature functions for more compact notation and

considering the need of one feature function fij for each (i, j) transition and one feature

function fio for each state-observation pair (i, o), then the HMM can be written as:

���, �� = 	 1� exp ���������, ����, ����

���

 (9)

and considering that the joint probability of a state sequence y and an observation sequence

x can be written as follows:

���, �� = 	!����|���������|����

���

 (10)

then the HMM can be written as:

���|�� = 	 �(�, �)∑ �(��, �)��
=

exp		∑ �������, ����, ����
���
∑ exp		∑ ������′�,�′���, ����
���
��

 (11)

Chapter II - Information Extraction related tools, methods and techniques Page | 14

This distribution is a linear-chain CRF that includes features just for an element identity

(for example a single word in a word sequence labeling problem). To use additional

features (like adjacent words or prefixes or suffixes) the feature functions fk should be made

more general than just identity functions. Thus, a linear-chain CRF is written as:

���, �� = 	 1�(�) exp ���������, ����, ����

���

 (12)

where Z(x) is the normalization function defined as:

�(�) = 	� exp ���������, ����, ����

���

�

 (13)

CRFs are a good solution for a number of relational problems [12] because they allow

dependencies between entities and include rich features of entities. Furthermore, CRFs

avoid the bias problem that conditional Markov models based on directed graphical models

exhibit [13]. On the other hand, CRFs are more difficult to implement, the training step is

more complex and they are rather slow compared to HMMs and even to Maximum Entropy

Markov Models.

Due to their characteristics and performance, CRFs are being used on an ever increasing

rate for IE and NLP tasks. Commercial and open source implementations exist, like

MALLET21, MinorThird22, CRFSuite23, CRF++24 or in Stanford’s NER25. In the proposed

system in this work, Stanford’s NER is used for CRF support.

II.3. Parsers

Parsers, from a NLP point of view, perform syntactic analysis on texts in order to discover

their sentences’ grammatical structure. Parsing is done in respect to a formal grammar of

choice.

There are many categories of parsers, but a general classification could identify a few

distinct areas like dependency parsing vs phrase structure parsing or shallow vs deep

parsing.

Dependency parsing reveals a sentence’s structure as determined by a relation between a

head (a word) and its dependents (other words, usually modifiers, objects or complements).

21 http://mallet.cs.umass.edu/
22 http://minorthird.sourceforge.net/
23 http://www.chokkan.org/software/crfsuite/
24 http://crfpp.sourceforge.net/
25 http://nlp.stanford.edu/software/CRF-NER.shtml

Chapter II - Information Extraction related tools, methods and techniques Page | 15

Dependency parsing is concerned only with creating dependency trees and ignores other

issues like word order for example. This makes them well suited for language invariant

syntactic analysis (ex: for languages with free word order). Furthermore, dependency

parsers have a high efficiency rating compared to phrase structure parsing and deep parsing.

The output of these parsers are dependency trees. The trees look similar to constituency

trees (dependency grammar is equivalent to constituency grammar if there is one restriction

of the constituency grammar – that in each phrase a word is set to be its head [14]) and

usually the NLP field treats both tree types the same [15]. A dependency tree makes

explicit relationships between words in terms of heads and dependents (see figure 2) while

a constituency tree makes explicit syntactic constituents visible in a sentence (see figure 3).

The trees’ nodes are words, while their links are relations between words.

Some examples of current dependency parsers: KSDEP [16] – uses a probabilistic shift

reduce algorithm, MST [17] – implements an Eisner algorithm for projective dependency

parsing.

Phrase structure parsing, coming from phrase structure grammar, usually divides phrases

into a verb phrase (VB) and a noun phrase (NP) and then further refines each until reaching

individual word level. Phrase structure parsing has been the most active parsing sub-domain

due to the existence of the Penn Treebank.

Examples of current parsers include NO-RERANK [18] – based on lexicalized PCFG

model; RERANK [19] – takes the first 4 results of NO-RERANK and using a MEM

(Maximum Entropy Model) selects the most probable choice; BERKELY’s Parser [20];

Stanford’s [7] parser – an unlexicalized parser.

Shallow parsing analyses a sentence to identify its component groups (nouns, verbs, etc),

but does not attempt to describe the sentences’ internal structures or any other deeper

features (as deep parsers do). In NLP applications shallow parsers are often used over deep

parsers due to their considerable speed gain. Deep parsers use the concept of predicate

argument structures in their parse evaluation. Such a structure is a graph that represents

This (Prn)

is (V)

example (N)

an (D)

dependency (N)

of (P)

trees (N)

This is an example of dependency trees

Prn V D N P N N

Figure 2. Two equivalent notations of dependency trees

Chapter II - Information Extraction related tools, methods and techniques Page | 16

syntactic and/or semantic relations between words. Deep parsers provide theory specific

syntactic and/or semantic structures [21].

A good example is the ENJU deep parser [22] using a HPSG grammar extracted from the

Penn Treebank. It also uses a maximum entropy model that has been trained with a HPSG

treebank derived from the Penn Treebank.

Figure 3. ENJU deep parser visual example (constituency tree) for the sentence ‘I see what I eat’ 26

Most of the current parses are statistical parsers, incorporating machine learning algorithms.

These kinds of parsers require training data before usage. The majority of parsers are

trained using the treebank (parse tree collection) offered by Penn, and especially using the

Wall Street Journal section of the Penn Treebank. There are other available treebanks, for

example in the medical sector there is the GENIA Treebank [23]. The accuracy of parsers

varies with the available training set’s size and most importantly, domain. A state of the art

parser trained on a generic treebank will perform worse that an older generation parser

trained on a specific domain treebank.

In the present work Stanford’s Parser is used to obtain the syntactic and the dependency

trees.

II.4. Coreference resolution

Coreference resolution is the task of identifying expressions (words or sequences of words)

that refer to other expressions in texts. This is an important task as it allows NLP

applications to identify information that is given about each particular entity throughout the

available text. In particular, coreference resolution is a critical component of an IE system.

Anaphora is a linguistic phenomenon in which an entity is interpreted using knowledge of

previous entity or expression (defined as the antecedent) in a text. The anaphor and the

26 Image obtained using the online ENJU 2.4 parser at http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html

Chapter II - Information Extraction related tools, methods and techniques Page | 17

antecedent are in a coreference relation, with one referring to the other. This creates

confusion on the definitions of anaphor and coreference. Both are interrelated, but also have

non-overlapping areas. There are coreference relations that are not anaphoric and the other

way around: for the sentence “The best teams in NBA are better than ours’.” the anaphoric

relation is not coreferential, while for the sentence “The capital of Romania … in

Bucharest…” the coreferential relation is not anaphoric.

Coreference resolution is a very difficult task due to the complexity inherent in natural

language. There are many types of coreference, for example repetition coreference (I saw a

car. The car was green), synonym (I lost my bicycle. I think my bike was stolen.), hypernym

(Alex was stung by a mosquito. The insect then flew away), proper name (Bill Gates gave a

speech. Mr. Gates said that ..), pronoun (I saw Alex, I told him to..) etc.

The coreference resolution task can be considered with three approaches: Supervised

Machine Learning, Unsupervised Machine Learning and Knowledge-based approach.

The Supervised Machine Learning approach is a very active sub-domain, due to the

increasing ML popularity. The systems usually work by finding anaphoric NPs (Noun

Phrases) and then create chains by identifying the most likely antecedent(s) using

predefined features [24]. Training is done on existing corpora (for example MUC –

Message Understanding Conference – training and test data).

Feature sets are diverse and several techniques are used for comparing features: string

match (cat matches the cat), alias (if an entity is an alias of another, depending on type, can

be dates like 08.10 matches August, 2010, or Clinton matches Bill Clinton), distance

between entities (number of words or sentences that separates two entities), pronouns

features (true or false if entity is a pronoun or not), definite NP features (true or false if a

NP is definite – if it starts with the word the – the car), demonstrative NP features (true or

false if a NP is demonstrative – if it starts with this, that, these, those), number agreement

(if both entities are singular or plural), semantic class agreement (use of WordNet for

example to determine if both entities are persons, dates, objects, etc.), gender agreement (if

both entities are a he, a she or unknown), proper name agreement (if both entities are

capitalized), appositive features (if one entity is in apposition to the other – ex: president of

USA is in apposition to Lincoln in “Lincoln, president of USA, …”), etc [25].

The choice of classifiers is also varied, starting from Hidden Markov Models, to decision

tree learning algorithms [24], up to Conditional Random Fields [26].

Unsupervised Machine Learning approaches are an alternative to the well performing

supervised approaches where annotated training corpora are not available. Even for

Chapter II - Information Extraction related tools, methods and techniques Page | 18

English, where corpora are plentiful, there are sub-domains that are poorly covered, and

thus unsupervised coreference resolution systems are chosen.

The best known unsupervised system was proposed by Cardie and Wagstaff [27] [28] in

1999, viewing the problem as a clustering task. The clustering is done using a distance

metric that is given by a set of incompatibility functions and other indicators. Iteratively,

the algorithm starts the initially single-word clusters and merges them based on the distance

metric. The initial system had 12 features. Eventual developments rose the number of

features to almost 50, and one experimental system later tried the same approach with a

feature set of over 300 obtaining improved results.

Knowledge-based approaches use a lot of diverse methods. There are all kinds of

combinations between rule-based systems, heuristic systems, morphological, syntactic and

semantic information provided by deep parsers, up to data and knowledge repositories

(starting from word lists, dictionaries and gazetteers containing lists of names/

organizations/places to semantic information such as WordNet’s hypernym tree).

For example, one such system [29] works by first using heuristics to extract only valid

antecedent candidates and then choose pair candidates based on proximity and coreference

type. Another approach is to use information extraction patterns to identify entity role: first

identify NPs that are not anaphoric and then use case resolution to determine coreference.

The remaining unsolved cases go through a series of manually coded extraction patterns

that use knowledge sources [30].

One big advantage of knowledge-based approaches is that usually there is no need of

annotated corpora; however, the downside is that manually created rules and heuristics are

needed (sometimes difficult to upkeep), involving domain knowledge of the developers.

II.5. General purpose corpora

Corpora have started to be developed in the early 60s, as a natural need for a repository of

accurate data for one task or another. Initially, the vast majority of work was done by hand.

As time passed and computers evolved, the corpora started to benefit from semi-automatic

and automatic annotation, further improving the accuracy but especially the time needed for

manual correction. The size of corpora increased, as well as their specialization. Today

there exists a large variety of large corpora for very diverse tasks, starting from the standard

POS tagged corpora, treebanks, domain corpora (large collections of medical texts or news

articles, or old language documents, etc), tokenized corpora used for chunker training,

semantically annotated corpora annotated with ontology references, and so on.

Chapter II - Information Extraction related tools, methods and techniques Page | 19

Further on, two important corpora will be presented, the Penn Treebank [31] and the Brown

Corpus. The Penn corpus provides a collection of syntactically parsed sentences while

Brown provides POS tagged text for tagger training.

Penn Treebank

Treebank refers to a text that has been syntactically annotated and represented as a

collection of tree structures. Such treebanks are usually created starting from texts that have

been annotated with part-of-speech tags and syntactic structures.

As an alternative to the manually solution, where linguists annotate sentences with syntactic

structure, a parser can be used to assign it. The parser alternative does not eliminate the

human interaction – the annotation being required to be checked and if necessary corrected.

Penn Treebank annotates the phrase structure (it is also possible to annotate the dependency

structure) and is very popular due to its large size and simplicity of the representation. It

can be rapidly used to train parsers or other NLP related tools.

A simple example:

Cat hunts mice

 (S (NP (NNP Cat))

 (VP (VPZ hunts)

 (NP (NNP mice)))

 (. .))

Brown Corpus

In the mid-1960s, at Brown University, the first major corpus for computer analysis was

developed – the Brown Corpus, made up of 1,000,000 words from random publications.

Almost a decade later, the tagging for the Brown Corpus was nearly completed. It was

based on a handmade list of what categories of part-of-speech could co-occur at all.

Initially, the first approximation was around 70% accurate. Subsequently, corrections have

been made and the tagging accuracy improved to almost 100% (considering that there

exists inter-annotator disagreement).

The Brown Corpus formed the basis for later part-of-speech tagging systems, such as

VOLSUNGA and has been superseded by the much larger British National Corpus (100

million words).

The Brown corpus is used for many purposes, starting from POS training to using the

sentences and words themselves to provide a reference for each word’s information content

when used with an ontology like WordNet.

Chapter III - Knowledge acquisition and representation Page | 20

III. Knowledge acquisition and representation

III.1. Ontologies as information repositories

An ontology is a form of knowledge representation and can be used to describe a domain

using a set of concepts and the relationships between those concepts in the context of that

domain. There are many definitions of ontologies; one would be that an ontology defines a

common vocabulary for entities (humans or machines) who need to share information in a

domain. It includes machine-interpretable definitions of basic concepts in the domain and

relations among them [32].

An ontology is based on formal explicit descriptions of concepts, properties of each concept

and restrictions on these properties. Description of concepts are applied to a specific

context, they describe particular meanings. These descriptions are called concepts or

classes. Properties or roles of these concepts describe various features and attributes of the

concepts. While classes have the role to represent an entity into an ontology, a specific

example of this entity is represented by instances.

Artificial intelligence, software engineering27, biomedical informatics28, Semantic Web or

GIS Systems [33] [34] are just a few of the domains the ontologies are used in.

One of the purposes ontologies are developed for is to share the same language between

entities. For example, there are different Web sites containing information from the same

domain or providing e-commerce services in the same area – for example pharmaceutical

information/e-commerce. If all these sites share and publish the same basic ontology of the

terms they use, then software agents can extract information and can aggregate it from each

of these different sites. The aggregated information will be used to answer user queries or

will be sent as input data to other applications.

If an ontology is developed to represent different domains with specific needs (for example

different domains whose models need to represent the notion of time) then the ontology can

be simply reused by other groups. An ontology can also be extended to describe a specific

domain of interest or can be integrated among other ontologies to describe portions of a

larger domain.

When reusing existing ontologies or extending them, a formal analysis of terms is useful.

Once a declarative specification of the terms of a domain knowledge is available, the

analysis of domain knowledge is possible.

The major ontology components are classes, relations, attributes and individuals.

27 For example, SUMO (http://www.ontologyportal.org/index.html) is used in commercial applications
28 http://www.ebi.ac.uk/ontology-lookup/ontologyList.do

Chapter III - Knowledge acquisition and representation Page | 21

Classes are concepts, abstract groups of objects defining kinds of things, from general to

specific. Classes can be subclasses of other classes. Classes classify other classes and/or

individuals. For example, class thing is a superclass of class vehicle. In turn, vehicle

is a superclass of class automobile, meaning automobile is a subclass of vehicle.

This type of inheritance between classes forms a tree or a graph defining a domain. Classes

can be instantiated by individuals. For example, the class Hyundai_Accent can be

instantiated by an individual that is an automobile and has specific attributes.

Relations are ways in which classes and individuals can be related to one another. The set

of relations describes the semantics of the domain. The most important types of relations

are the superClassOf, type or subClassOf. This defines which objects are classified by

which class. Based on these relations a hierarchical taxonomy is created and each object is

the “child” of a “parent class”. Other relations exist. For example, another possible relation

is isPartOf (meronymy). petrol_engine is part of car since a car contains an engine.

Relations link classes or instances to other classes, instances or literals. For example, the

relation isBornOnDate links a person instance to a calendar date.

Attributes are aspects, properties, features, characteristics, or parameters that objects (and

classes) can have and that relate them to other objects.

Individuals: instances or objects (the basic or "ground level" objects). A class is given

specificity by instantiating it (creating an object that is a type of a specific class) so that the

class is now unique by the values of the attributes it now has filled. There is an ongoing

discussion whether individuals should be used instead on named classes, especially more so

on rather small ontologies, where both approaches work. In theory [32], an individual

should be used when it has properties that are different from other individuals of the same

type, and that individual is further referred on by other individuals. Otherwise, named

classes should be used. Individuals should be instantiated classes that are located at the

bottom layer (leaf nodes – most specific) of an ontology.

There are other ontology components like restrictions (dependencies between classes

restricting the set of valid assignments), rules (classic if-then constructs), events (triggers

on changing values of attributes or relations), etc.

III.1.1. RDF – Resource Description Framework

RDF is a metadata model designed originally by the W3C 29 and became a W3C

Recommendation in 2004. It is a standardized method of information modeling

implemented in web resources, initially on top of XML for encoding metadata (metadata is

29 http://www.w3.org/

Chapter III - Knowledge acquisition and representation Page | 22

data about data, like the date of the author of a news article, accompanying the article

itself). RDF is designed to be read and understood by computers, not humans (though more

human-readable formats exist).

RDF identifies resources using URIs (Web identifiers) and describes them using properties.

For example:

<?xml version="1.0"?>

<rdf>

 <description about="http://www.stefandumitrescu.ro">

 <author>Stefan Dumitrescu</author>

 <homepage>http://www.stefandumitrescu.ro</homepage>

 </description>

</rdf>

where the resource is a website (www.stefandumitrescu.ro), having the property ’author’

and the property value ’Stefan Dumitrescu’.

A statement is an association of a subject and an object linked by a predicate. The above

example translates as ‘Stefan Dumitrescu is the author of www.stefandumitrescu.ro’ , with

‘Stefan Dumitrescu’ as subject, the website address as object, linked by the ‘is the author’

relation. We can also say that the statement is a triple, meaning we have a subject, a

predicate and an object. The subject is normally either a URI or a blank node (anonymous

resource). The predicate is also a URI, and the object can be either a URI, a blank node or a

simple string literal.

RDF defines a specific vocabulary: rdf:type (the resource is an instance of a specific class),

rdf:Property, rdf:Alt rdf:Bag rdf:Seq (containers), rdf:List (list), rdf:nil (an empty list),

rdf:Statement, rdf:subject, rdf:predicate, rdf:object.

RDF can be serialized in different formats. The main format is XML, like in the example

above. Notation 3 (N3) is also a major format for RDF, being a more compact non-XML

notation, designed mainly for human readability.

In N3, the example above becomes (using ds as a namespace, definition omitted):

http://www.stefandumitrescu.ro

 ds:author “Stefan Dumitrescu”

 ds:homepage “http://www.stefandumitrescu.ro“

Another RDF format is Turtle (Terse RDF Triple Language), it is a superset of N-Triples

(yet another RDF format) and also valid N3 format. Turtle does not extend RDF’s graph

model, unlike N3.

N-Triples uses plain-text serialization to store RDF information. It was designed to be a

simpler format than both N3 and Turtle.

Chapter III - Knowledge acquisition and representation Page | 23

Ontologies can be stored in RDF format, and RDF itself can form the basis of more

advanced knowledge representation languages, like OWL (Web Ontology Language).

III.1.2. WordNet

Princeton University’s WordNet 30 [35] is a free electronic lexical resource containing

dictionaries of nouns, verbs, adjectives and adverbs. It provides not only dictionaries but

also organizes related concept from the individual categories into synsets (synonym sets).

Currently the latest version of WordNet is 3.0, containing around 150000 words organized

in around 115000 synsets.

The basic WordNet concepts are: synsets, glosses and lemmas. The gloss is an explanation

or definition of a word in a text, basically a sense-disambiguated corpus. In addition to the

definition itself, the gloss also contains additional explanations and examples. Lemmas are

the words that belong to a synset. They represent the string text of the word from WordNet

database.

The synset is the equivalent of a concept. A synset is, in essence, an ordered list of

synonyms. The synonyms themselves are words that are in the same lexical category and

are commonly used to express the same meaning. Synsets as well and the synset hierarchy

(created by relations like is-A, part-of, etc.) represent the most used information in

WordNet, bringing also semantic value over the standard lexical value a dictionary

provides.

WordNet is currently the most commonly used lexical resource for word sense

disambiguation. It encodes many senses for every word, and while this seems at first a solid

base to use for the diverse tasks, it has been argued that there may be too many senses even

for humans [36]. This issue might prevent Word Sense Disambiguation systems from

performing at their best. Solutions have been proposed, like clustering methods that might

be used to group similar senses together and reduce the total number to only a few, more

manageable and distinct senses [37]. For English, accuracy is over 90% if we take coarse-

grained senses (every word has few, clearly defined and separate senses), and about 59.1%

- 69.0% for fine-grained senses (reported by Senseval-231) (every word has a many senses

covering many possible meanings). We must note that for fine-grained senses, the baseline

algorithm is that of always choosing the first sense of every word, with accuracy ranging

from 51.5% to 57%. This fine-grained baseline accuracy is a problem for most algorithms

to even reach, let alone out-perform.

30 http://wordnet.princeton.edu/
31 http://www.senseval.org/

Chapter III - Knowledge acquisition and representation Page | 24

There is an ongoing discussion whether WordNet can be viewed as an ontology. From one

point of view, the graph provided by the synsets and the hypernym relations between them

can be viewed as such an ontology. But, an ontology in its definition does not allow

inconsistencies that are present in WordNet, like redundancies in the hierarchy or common

specializations for exclusive categories. However, the hierarchy has been automatically

cleaned and imported, in one form or another, in several ontological systems, starting from

WebKB-232 to DOLCE33, DBpedia34 or YAGO35.

WordNet synset graph

WordNet’s synsets together with the different relations between them, as discussed above,

may be considered to form an ontology. Although under discussion, even if is not

considered an ontology, then at the very least the tree-like graph it forms if we consider the

hypernym relation (subClassOf) is a large taxonomy.

The formed graph can be used to add semantic value to nodes, and the links themselves are

used as information in NLP, IR, IE algorithms, where the nodes are considered entities the

algorithms work with.

For example, figure 4 presents a fragment of WordNet’s hypernym tree. It can be seen that

classes are linked up to more and more generic classes until the top of the tree

wordnet_entity.

32 Integration of WordNet 1.7 in WebKB-2, http://www.webkb.org/doc/wn/wnIntegration.html
33 http://www.loa-cnr.it/DOLCE.html, also reference Sweetening WORDNET with DOLCE [145]
34 DBpedia includes Wikipedia categories, the YAGO Classification scheme and WordNet Synset links,

http://wiki.dbpedia.org/Datasets
35 YAGO is built starting from Wikipedia and WordNet. Every entity in YAGO has at least one

correspondence to a WordNet class through the type relation ex: Ford_Focus type wordnet_car [39]

Chapter III - Knowledge acquisition and representation

Semantic similarity measures

Semantic similarity is a measure of the closeness of relatedness of two concepts. While

there are many existing ways to determine relatedness, we will present measures that use

Information Content (concept introduced by Resnik in 2005

is a specificity measure for concepts. For example, concepts that are more specific have a

higher IC associated value than more general concepts (ex:

device). The IC value is calculated depending on the frequency of concepts from the text.

The process is as follows: the text (corpus) from which IC values are to be derived from is

parsed, and for every concept found, its

ancestors are increased by one in WordNet. The ancestor hierarchy is a concept hierarchy

where the links are WordNet relations (e.g.: for nouns we have

relations). Most often the hypernym

An important issue comes from the

corpus is sense-tagged, it is easy to count the senses that have to be incremented for every

word. However, if the text is not sense

are incremented, as well as their ancestors. In this scenario, the frequency of all the

occurrences of a word is divided equally among the different possible senses.

Figure

Knowledge acquisition and representation

Semantic similarity measures

Semantic similarity is a measure of the closeness of relatedness of two concepts. While

there are many existing ways to determine relatedness, we will present measures that use

(concept introduced by Resnik in 2005 [38]). Information Content (IC)

is a specificity measure for concepts. For example, concepts that are more specific have a

higher IC associated value than more general concepts (ex: locomotive has a higher IC than

device). The IC value is calculated depending on the frequency of concepts from the text.

The process is as follows: the text (corpus) from which IC values are to be derived from is

parsed, and for every concept found, its frequency as well as the frequency count of its

ancestors are increased by one in WordNet. The ancestor hierarchy is a concept hierarchy

where the links are WordNet relations (e.g.: for nouns we have subClassOf

relations). Most often the hypernym relation is used (subClassOf).

An important issue comes from the corpora on which the IC values are determined. If the

tagged, it is easy to count the senses that have to be incremented for every

word. However, if the text is not sense-tagged, then all the possible senses for every word

are incremented, as well as their ancestors. In this scenario, the frequency of all the

occurrences of a word is divided equally among the different possible senses.

Figure 4. Example of synset partial hypernym graph

Page | 25

Semantic similarity is a measure of the closeness of relatedness of two concepts. While

there are many existing ways to determine relatedness, we will present measures that use

. Information Content (IC)

is a specificity measure for concepts. For example, concepts that are more specific have a

locomotive has a higher IC than

device). The IC value is calculated depending on the frequency of concepts from the text.

The process is as follows: the text (corpus) from which IC values are to be derived from is

frequency as well as the frequency count of its

ancestors are increased by one in WordNet. The ancestor hierarchy is a concept hierarchy

subClassOf or partOf

on which the IC values are determined. If the

tagged, it is easy to count the senses that have to be incremented for every

ged, then all the possible senses for every word

are incremented, as well as their ancestors. In this scenario, the frequency of all the

occurrences of a word is divided equally among the different possible senses.

Chapter III - Knowledge acquisition and representation Page | 26

After the frequency count is completed, for each concept in WordNet the IC value is

computed as the negative log of the probability (frequency count) of the concept.

"#�$� = −log(%�$�) (14)

IC information is extracted from general corpora like the Brown or SemCor corpora.

We will investigate three different Information Content measures: Resnik’s measure res,

Lin’s measure lin, Jiang and Conrath’s measure jcn. All these measures take two synsets as

inputs, and produce a real value that represents the similarity between the two synsets. They

are all based on the idea of finding the least common ancestor (LCA), meaning finding the

concept that subsumes both of the synsets in WordNet’s synset hypernym hierarchy. If

there is more than one LCA, the least general LCA is taken (the lowest in the hierarchy).

The Resnik measure (res) provides the basic metric that is used both for lin and jcn

measures. The similarity value is the Information Content value of the synset’s LCA.

$������$1, $2� = "#(&�$�$1, $2�) (15)

The res measure may provide the same value for different synsets that share the same LCA,

and thus is not a very informative measure. Lin’s measure attempts to improve the accuracy

by incorporating information about the IC of each of the synsets.

$������$1, $2� = 2 × 	 $�����($1, $2)"#�$1� + "#($2) (16)

Jiang and Conrath provide an alternate distance metric instead, using the same elements as

Lin:

��$'����$1, $2� = "#�$1� + 	"#�$2� − 	2 × $�����($1, $2) (17)

However, to transform jcn into a similarity measure, we can simply invert the distance

formula:

$������$1, $2� = 1��$'���($1, $2) (18)

While this formula provides a similarity measure instead of a distance measure between

synsets, it does alter the value differences between sets of synsets due to the division.

These three measures types represent standard measures used for a long time in NLP

applications, with consistent results.

Chapter III - Knowledge acquisition and representation Page | 27

III.1.3. YAGO

YAGO (standing for Yet Another Great Ontology) is a light-weight and extensible

ontology with high coverage and quality [39]. YAGO was built as a very large, accurate

(95+ accuracy) and simple to use ontology for machines including WordNet entities and

hierarchy, and information extracted from Wikipedia like named entities (people,

organizations, geographic locations, books, songs, products, etc.), and also relations among

these entities.

For the chosen representation language, YAGO designers decided to extend RDFS to suit

their particular needs. Although OWL is the current web standard, the motivation of not

developing YAGO in OWL was because OWL Full is undecidable (it is an extension of

RDF) and OWL Lite and DL, while decidable, place some restrictions on class definition

and description (they are both extensions of a restricted view of RDF). RDFS, which is the

basis for OWL can express such relations but can only provide limited semantics, thus the

need to extend RDFS. In the YAGO model all objects are entities and two such entities can

stand in a relation.

Example [39]:

Albert_Einstein hasWonPrize Nobel_Prize

Albert_Einstein bornOnDate 1879

”Einstein” means Albert_Einstein

In the first two statements entity Albert_Einstein stands in relations to entity

Nobel_Prize and the date 1879. The third relation links a string to a class using the means

relation. This enables the linking of any number of strings to an entity, helping to deal with

name synonymy. Entities are instances of classes. For this relation, YAGO uses the type

relation as in Albert_Einstein type physicist. Also, classes stand in a subClassOf

relation to one another. Thus, we have physicist subClassOf scientist, which in turn

is a subclass of another class, and so on until reaching the root node entity (every class is

an indirect subclass of class entity).

Another important note to be made about YAGO is that for n-ary relations it uses facts

about facts. Each fact (two entities that stand in a relation) is given a unique id. Thus, for

example, we could express that Einstein was born in the city of Ulm, Germany in the year

1921 like:

#1: Albert_Einstein bornIn Ulm,_Germany

#2: #1 time 1921

Chapter III - Knowledge acquisition and representation Page | 28

YAGO uses two sources of information: WordNet and Wikipedia. From WordNet it

borrows the hypernym hierarchy, while from Wikipedia it borrows entities and uses them

as arguments to the relations implemented in YAGO. Each synset from WordNet is

translated in a YAGO class. In cases where Wikipedia also contributes entities, WordNet is

always given preference. Thus, WordNet defines the upper hierarchy, while Wikipedia

contributes to the lower, most specific branches. These are also linked up using the

subClassOf relation.

WordNet synsets have words with similar meaning. After YAGO creates an class from

each synset, it uses every word in the synset to add means relations to the created class. For

example, the word “car” belongs to the Automobile synset – YAGO creates the Automobile

class, and the fact “car” means automobile.

There are meta-relations defined, like context, or extractedBy. These give information

about the place the data was extracted, the confidence in the extraction, etc. It should be

noted that there is a fixed number of relations built in YAGO. While this does not mean

that YAGO is limited, it does create the need of extending YAGO with new relations, and

brings up the debate whether the relations should be canonical (being pre-defined as a

function with domain and range f:D � R) or free (not defined). YAGO can be improved

with the addition of new canonical relations.

YAGO stores its data in any of the XML, SQL and RDFS formats. This provides a great

boost in accessibility.

In summary, YAGO stores more than 2 million entities with 20+ million facts about them.

The facts are high quality, having been automatically extracted from two trusted

information sources, Wikipedia and WordNet. Also, YAGO uses a simple, extendable,

RDFS-compatible model. YAGO is important because it is a major step in providing large,

accurate data sources. At the time of writing, the YAGO upper hierarchy was embedded in

DBPedia 36 database, which is the only larger source of information than YAGO itself.

However, community efforts like Freebase 37 will, if not already, create much larger

information sources.

III.2. Information Extraction

The Information Extraction (IE) field has risen from the need for computers to understand

the huge amount of information on the Web that is in raw unstructured text format. IE tries

to extract textual facts into a relational structure, a knowledge base. The smart structuring

36 http://dbpedia.org/About
37 http://www.freebase.com/

Chapter III - Knowledge acquisition and representation Page | 29

of information into such knowledge repositories allows computers to answer user queries

with actual answers instead of lists of candidate web sites.

The core task that defines IE is the extraction of facts form natural language, in one form or

another, using an extractor that identifies entities and their linking relationships. For

example, from the sentence “Einstein, born in Ulm (1879), went on to win the Nobel Prize

in Physics in 1921” several facts can be extracted:

1. Einstein was born in Ulm.

2. Einstein was born on date 1879.

3. Einstein won the Nobel Prize in Physics.

4. Einstein won Nobel Prize in Physics in 1921.

While for humans these facts are extracted instantly and correctly, for a computer it is much

more difficult. For example, Einstein in this case is the subject of every fact. Einstein is a

reference in fact to the Albert_Einstein entity. The extractor must know that usually a

number in brackets after a location means a date, so it can extract that the born date is the

one in brackets. The extractor must ignore irrelevant words such as “went on” and pick

“win” as the correct relation between Einstein and the Nobel_Prize entity. Furthermore,

the Nobel_Prize entity is generic, and it has to be specified that there exists a

Nobel_Prize_in_Physics instance characterized by the date of winning, in this case,

1921.

Normally, the standard triple format is used: Subject, predicate, Object. But how to store

relations that have multiple arguments? For example fact 4 cannot be stored into a standard

triple. One solution is to also store the id for each fact, and then fact 4 would be stored as

#4 (#3, onDate, 1921) where fact 3 would be: #3 (Albert_Einstein, wonPrize,

Nobel_Prize_in_Physics); Another solution would be to individualize the Nobel Prize

instance, meaning to add another fact like (Nobel_Prize_in_Physics_12345, type,

Nobel_Prize_in_Physics) where the _12345 would be an unique identifier for the new

entity that is a type of generic Nobel Prize in Physics. Then it would be easy to link

Einstein to this specific instance (for fact 3) and specify that this instance was won in 1921

(for fact 4).

There is a choice of storage formats that influences the types of algorithms that can be run

on the database in response to queries. There are representation formats on which

inferences can be made; some formats are decidable but more restricted (OWL Lite, DL),

some are not decidable but much more expressive (OWL Full). An extractor has to take

every such aspect into consideration.

There are two major types of results obtained for the IE task. The major effort currently in

IE is to analyze texts and extract canonical facts. A canonical fact is a fact that has its

relation predefined in an ontology (the relation is one from a set of relations defined in that

ontology) and its entities also belong to a specific generic entity (they can be either

Chapter III - Knowledge acquisition and representation Page | 30

subclasses of a more generic class or instances of a specific class). There are advantages

and disadvantages with this approach. For example, one has to predefine each relation of

interest. This leads to a certain domain specificity degree, and also the time needed for

every relation is linear to the number of required relations.

Initially, IE systems tried to extract information from very domain-specific sources like

news articles or internet posts. More recently different systems have begun to be used on a

larger domain base, with decent success [40] [41]. SOFIE – Self-Organizing Framework for

Information Extraction [42] is a good example of the current generation of systems.

The second major approach is based on the premise that the Web contains very much

information and the number of possible relationships that can be found is much larger that it

is possible for humans to predefine and create models for each relation type. To be able to

extract all possible relations (in the thousands as opposed to only a few hundred) some

concessions have to be made. While the extracted entities and relations number is vastly

superior to the traditional canonical approach, the facts themselves are not canonical,

meaning they are just strings, without any predefined meaning behind them. The best

example of this approach is TextRunner [43], having a collected knowledge base of

millions of entities and thousands of extracted relations.

III.2.1. Open IE – TextRunner

The TextRunner system (developed by Michele Banko [43]) introduces a new term coined

“Open Information Extraction”, moving “away from architectures that require relations to

be specified prior to query time in favor of a single data-driven process that discovers an

unbounded number of relations whose identity need not be known in advance” [43].

TextRunner takes as input web documents (unstructured free text) and outputs sets of tuples

containing entities that stand in a relation. TextRunner tries to extract as many relations as

possible. It does not have a set of predefined relations, thus the tuples it extracts are string

tuples (entities and relations are not canonical, meaning they are not predefined in an

ontology, for example). Currently TextRunner has extracted a large number of tuples (more

than 13 million after tuple reductions), spanning about 16000 distinct relations linking

around 4.2 million entities.

The system emphasizes on three points / problems:

- Automation – meaning that for a system to be useful it must extract as many

relations as possible.

- Domain Independence – meaning that an IE system should handle texts from any

domain.

- Efficiency – meaning that the system must scale to the size of the Internet, being

able to process billions of documents.

Chapter III - Knowledge acquisition and representation Page | 31

The main feature of TextRunner is that it implements a unitary model of expressing

relationships (independent of relationships themselves). This allows for a language model

that can either be learned automatically or developed by hand that takes as input documents

(domain independent) and outputs tuples that contain entities linked by relations. This

feature addresses the three points above in that it removes the need for manual relation

identification (reducing manual labor to a constant, independent on the relation set size) and

it shifts the focus to relation discovery and extraction rather than the traditional entity

discovery and relation identification from the pre-programmed set.

In the thesis that presents TextRunner [43], Banko shows that 95% of the patterns that are

used to define binary relationships can be grouped into only a few generic patterns. Thus,

most instances are verb-centric – about 37%, verbs + preposition at about 16%, infinitival

phrases – 9%, noun phrases + verb – 1%.

TextRunner is composed of the Learner module, Extractor module, Assessor module and

the Query Processor module.

Figure 5. TextRunner architecture 38

The Learner module outputs an extraction model for relationships based on a training

corpus and manually added heuristics. The model is language dependent (given it was

trained on a certain corpus) but is relation independent.

In the first stage (of two) the Learner labels its own training examples based on heuristics

as possible relation instances. In the second stage it uses the labeled data to train the

Extractor module. The Learner uses a set of parse trees to train the extractor using a single

self-supervised procedure instead of using a parser repeatedly. The relation instances

38 Image taken from [43], page 24

Chapter III - Knowledge acquisition and representation Page | 32

(positive and negative examples) are modeled using features that do not depend on

syntactic or semantic analysis during extraction. The output model does not contain relation

specific features.

The Extractor is used to extract tuples for all possible relations found in a given text.

TextRunner implements two extractors: the first considers relation extraction as a

classification problem while the second as a sequence labeling problem.

The first Extractor implements the Naïve Bayes classifier [44] which tries to evaluate if

chunks of text involving two delimiting entities form a relation. The classifier is trained

using the examples previously labeled by the Learner. Possible relationships are found by

examining the tokens (words) in the intermediate context created by a pair of given entities.

The search is refined by using a phrase chunker to identify and eliminate unnecessary

tokens such as adverbs or adjectives. The top most likely tuples are kept to be evaluated in

the next module.

The second Extractor implements CRFs (Conditional Random Fields, presented in section

II.2.2). The second order linear chain CRF is used to determine if token sequences are valid

candidates for entity-relation-entity tuples. After entity identification, all combinations of

two entities no more than a set word count apart (window size) are considered as borders

for a possible relation. The tokens between the entities are labeled using the BIO encoding

[45]. This encoding labels tokens as either B (beginning), I (intermediate – follows B) or O

(out – not in the phrase).

There are some limitations though: the extractors extract only explicit relations from the

text; the extractors extract word-based relations, not punctuation bases; relations must occur

in the same sentence to be considered.

The Assessor module identifies and ranks instances that refer to the same object or indicate

the same relation using different words. It implements an unsupervised algorithm [46]. It

firsts normalizes the tuples, performs synonymy reduction and then ranks the resulting

tuples.

Normalization is performed by simply stemming the words to their roots. Also, it removes

tokens that can lead to over specification by using a set of head-finding rules developed by

the parsing community [47]. This may introduce some problems, as possible needed words

are lost (ex: “most people” is reduced to “people”). The next step is Synonym Resolution

where the RESOLVER algorithm [46] is used to predict the likelihood that two strings refer

to the same item based on string-similarity and shared relational attributes. The last step is

the Assessment, where identical tuples are merged together. Given that if the number of

tuples is large, memory and processing problems may occur, the MapReduce [48]

framework is employed.

Chapter III - Knowledge acquisition and representation Page | 33

The Query Processor is the last module in TextRunner. It takes as input the tuples and

outputs a distributed index, useful for fact retrieval based on user queries. The inverted

index is created using Lucene 39 (an open source search engine). The Query Processor

enables relational Web search, where nodes in the graph are entities and the edges that link

two nodes are relationships between entities.

TextRunner is available online for testing at 40 where it allows searching the extracted

tuples.

III.2.2. Canonic fact extraction – SOFIE

SOFIE - A Self-Organizing Framework for Information Extraction [42] was developed as a

system for automated ontology extension. SOFIE parses text documents and extracts

ontological facts, adding the facts back in the ontology it used to asses them.

The problems SOFIE comes up against are: Word Sense Disambiguation, Pattern Matching

and Ontological Reasoning. SOFIE is interesting from quite a few points of view. First, for

the WSD problem, if it detects as it parses the text that more evidence for a word sense

accumulates against the previously selected sense, it reevaluates its choice for that word.

Second, it can reason on the plausibility of the proposed extracted patterns and reject some

of them. Third, SOFIE uses an ontology for reasoning, meaning it uses relation information

(like relation domain and range, constraints, etc), proposes hypotheses that it tries to satisfy.

It does all this by combining the three distinct problems in a single framework – translating

the problems into logical clauses that need to be satisfied, in essence solving a weighted

Maximum Satisfiability problem. The MaxSat problem (an extension of the standard Sat

problem) is to determine the maximum number of clauses that can be satisfied for a given

Boolean formula. The weighted MaxSat adds weight to the clauses and asks to determine

the maximum weight obtainable for the given formula.

The motivation behind SOFIE was that even though large sources of information exist, like

YAGO or DBpedia, they are still small compared to the information volume available on

the web. Furthermore, the size of the ontologies (knowledge repositories) themselves

should help with the effort of extracting even more knowledge with high accuracy.

The SOFIE model uses the following notations:

Facts are noted as produced(Hyundai,Accent) [1], meaning that the company Hyundai has

produced the product (in this case a car) named Accent, with the truth value of 1 (can be

either 1 or 0) in square parenthesis.

39 http://lucene.apache.org/
40 http://www.cs.washington.edu/research/textrunner/

Chapter III - Knowledge acquisition and representation Page | 34

SOFIE extracts pattern such as patternOcc(“@ is in @”, Bucharest@D1, Romania@D1)

[1], meaning that it has found a pattern represented by the string “@ is in @” where @

denotes placeholders, with text entities Bucharest and Romania, both of them found in

document 1 (noted as @D1). There is a restriction in place, meaning that if an entity is

found several times in the same document it is considered to denote a single entity

throughout that document – ex: “Java” found several times in one document will denote

either the island or the programming language, never both.

The fact that states how likely it is for a text entity to refer to an ontological entity is called

a disambiguation prior, that has a confidence value attached: disambPrior(Accent@D1,

Hyundai_Accent, 0.6)[1]. Based on the disambiguation priors, SOFIE can propose

hypotheses like one that states that an text entity is to be disambiguated as an ontological

entity: disambiguateAs(Accent@D1, Hyundai_Accent) [?]. The truth value is unknown

and thus noted with a question mark. The same type of hypotheses can be made for new

facts that have yet to be verified: locatedIn(Bucharest, Poland) [?] or about patterns

that may or may not express a relation: expresses(“@ is in @”, locatedIn) [?].

SOFIE also uses rules, which are first order predicate logic statements. The rules are used

for general world knowledge, like expressing a fact that if a person has died on date X it

cannot be born on a date later than X, or that if that person is born in a location, it cannot

be born on any other location. For example, the latter rule is expressed (generically) by:

R(X,Y) ^ type(R,function) ^ different(Y,Z) => !R(X,Y)

There are also rules that link facts and hypotheses. For example, a rule that links the pattern

occurrence P (string) to an actual relation R (ontological relation), with WX, WY meaning

words (text entities) and X and Y ontological entities:

patternOcc(P,WX,WY) ^ disambiguatedAs(WX,X) ^ disambiguatedAs(WX,X) ^

R(X,Y) => expresses (P,R)

All the rules are hand-added to the system.

The aim of SOFIE is to find the maximum number of satisfiable rules that make hypotheses

to be accepted as facts. The taken approach is to cast the problem as a weighted Max Sat

(Maximum Satisfiability) problem, with variables as hypotheses and rules the first order

predicate logic formula. SOFIE is given facts, hypotheses and rules and tries to find the

combination of truth values for the hypotheses so that the maximum number of rules is

satisfied.

First, the text is cleaned, tokenized and interesting entities are extracted. Between the

entities (which might be names, locations, organization, dates, numbers, etc) the linking

text is kept as a possible pattern, spanning no more than a preset window length. This step

produces the following fact type: patternOcc(P, WX, WY) [1], where P is the pattern (text

string), WX and WY are the interesting entities. Then all the interesting entities are

Chapter III - Knowledge acquisition and representation Page | 35

evaluated and the following fact type is produced: disambPrior(WX, X, k) [1], where WX

is the text entity, X is the ontological entity and k is a value that expresses the trust that WX

actually refers to X. What is interesting here is that the system uses the ontology for this

step. In the ontology there is a means relation that links strings to entities. In this way, if

“Lincoln” is found in the text, then the ontology is searched for the means relation that has

the string parameter equal to “Lincoln” and the ontological entity parameter is taken. This

may produce more than one disambiguation priors, as “Lincoln” can be a person, a rifle or a

car, and thus produce three facts with their own trust value.

The second step is the weighted MaxSat problem, which is NP-hard. The facts, hypotheses

and rules are cast into clauses. However, due to the form of the specific rules used by

SOFIE, a special customized algorithm named Functional Max Sat is used to “circumvent”

the difficulty of solving an NP-hard problem yet also delivering performance. This

approximation algorithm outputs solutions that are guaranteed to be in a certain range from

the optimal solution. The approximation guarantee parameter can be tuned for faster run

time but probably further from the optimum or longer run times but closed to the optimal

solution. The output of this second step is a set of facts like expresses(P,R),

disambiguatedAs(WX,X), meaning that SOFIE is certain that a pattern expresses an actual

relation, and an entity from the text refers to an ontological entity. Based on these relations,

new facts can be added: R(X,Y).

Results showed that SOFIE performs well, delivering 90%+ precision (meaning that 90%+

of the facts that it finds are correct). However the recall is very low (so it actually finds very

few facts out of the total number of facts that could be found in a document), but

comparable to current systems.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 36

IV. Entity recognition and word sense disambiguation for

Information Extraction

A major task in Information Extraction (as well as in Information Retrieval, Artificial

Intelligence, etc) is entity recognition and disambiguation – entities are the subjects and

objects of sentences, and clear identification is essential in order to achieve performance in

this field.

Regarding entity type, there are two major categories: named and common entities. Named

entities are usually persons, objects, places that are identified by a proper name (in most

cases beginning with a capital letter). Common entities are usually normal nouns, adverbs,

adjectives starting with lower case letter. For example: “Today, John is visiting the city of

New York” – “Today”, “city” are common entities and “John”, “New York” are named

entities.

The differences between entity types and characteristics have created two distinct tasks of

NLP: the task of disambiguating the senses of words (Word Sense Disambiguation – WSD

– applied generally to common nouns) and the task of recognizing and classifying named

entities (Named Entity Recognition – NER – applied generally to proper nouns as well as

other interesting entities like dates or numbers).

This chapter presents the tasks of WSD and NER separately, and then looks at common

points and systems that see both tasks from a single point of view (a term coined GNER –

General Named Entity Recognition).

IV.1. Word Sense Disambiguation

Entity disambiguation is the task of identifying which sense (meaning) of an entity (a

simple or composed word) is used in a sentence, given the fact that words are affected by

polysemy / homonymy problems. WSD allows computers to ‘understand’ the meaning of

words and language. It is an essential problem that if solved (or better stated if a WSD

approach would be developed that has human-like performance) would advance many

fields, starting from commercial applications like Internet search performance increases (as

a computer would ‘understand’ what a search string means), better automatic language

translation, etc, up to the field of Artificial Intelligence where WSD would be a requirement

for a ‘reasoning computer’ that could pass the Turing test.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 37

Brief History of WSD

WSD first began as a problem for Machine Translation (MT) by Weaver, 1949. Later, Bar-

Hillel (1960) tried to determine the sense of certain words in different sentences, but the

attempt was a failure, deciding that there were no means to identify the correct senses and

thus left the problem to the MT field. Bar-Hillel's report represented the basis for the

ALPAC report (ALPAC, 1966), which is generally regarded as the direct cause for the

abandonment of most research on machine translation in the early 1960’s. The 1980s

brought rule based systems, relying on hand crafted knowledge sources. Most of these

years were spent on AI-based work, yielding promising yet almost unusable results in all

but restricted domain fields. The major problem was the “knowledge acquisition

bottleneck” [49] – the problem of acquiring very large amounts of knowledge. In the 1990s

corpora were beginning to be developed to a large enough scale, and coupled with the

increase in processing power of the new PCs, corpus based approaches began to appear

[50]. The last decade brought hybrid systems that combine classic methods and newly

available resources like the Web.

WSD Applications

Sense disambiguation is an “intermediate task” [51], necessary in some step or another to

aid or to form the basis for many natural language processing tasks. Besides its main

purpose for message understanding and communication, it is also used in instances where

language understanding is not needed:

• machine translation, needed for automatic translation of foreign words that depend on the

surrounding context;

• speech processing, where WSD is needed for correct phonetization of words in speech

synthesis, segmentation and homophone discrimination in speech recognition;

• simple text processing, necessary for spelling correction, hyphenation, case changes,

diacritics placement, etc;

• information retrieval and hypertext navigation, WSD is used to eliminate word

occurrences from documents that use other senses for the given keyword;

• content and thematic analysis, WSD is needed to analyze the distribution of pre-defined

categories of words;

• grammatical analysis: for example, in part of speech tagging.

 Approaches

Currently, there are two major directions for WSD:

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 38

• Supervised Disambiguation, where machine learning approaches are used to train

various classifiers; these systems encode custom features into feature-vectors, and,

based on the provided labeled training data build models used to assign appropriate

word senses;

• Unsupervised Disambiguation, where the learning system uses unlabeled corpora.

When evaluating a WSD approach based on the resources used, two main categories

appear:

• Knowledge-Rich, where lexical resources like ontologies, thesauri or dictionaries are

used;

• Knowledge-Poor, where no such resources are used, instead relying only on the

corpus.

IV.1.1. Supervised Disambiguation

Supervised WSD uses machine learning (ML) techniques to determine a word’s sense. As

during the last decade new algorithms were developed and older ones improved, the ML

pool offered increasing resources to researchers that began using more and more such

algorithms. Currently, the vast majority of WSD systems is based on one or more ML

algorithms and overall performs better than other non-supervised systems.

IV.1.1.1. Decision based WSD

This approach to WSD is among the first attempts to use ML type of algorithms. However

this type of WSD was not very successful. Early attempts using decision trees in the 70s

[52] and 80s [53] and decision lists [54] yielded rather poor results. The development of the

C4.5 algorithm by Ross Quinlan [55], an algorithm now implemented and used in many

ML tools and application suites such as WEKA [9] did improve the results obtained by

using decision trees.

A decision tree is used as a predictive model to classify some input based on observations

about it. The process starts from the root observation and moves on branches down to the

leaves which represent the possible classification variants. The choice whether to move

down a branch or another from any node within a tree is based on the result of the

evaluation of the observation in that particular node.

For example, the C4.5 algorithm builds a decision tree starting from a set of training data,

using the concept of information entropy (entropy is the measure of uncertainty associated

with a random variable). Information entropy here refers to Shannon’s entropy which

measures the expected value of information contained in a word/message, using a standard

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 39

unit of measure (ex: a bit). The training data is represented as feature vectors of the form ti

= {f1,f2,f3, … ,fn, ci} where fk represents the features of training item ti and ci is the class of ti.

In the process of building the tree, at each node the algorithm chooses the attribute that best

splits the training set into two distinct categories by evaluating the normalized information

gain obtained by using that attribute to split the data. The information gain is in this case

the difference in entropy, and the attribute that maximizes this difference is chosen as the

criterion for the node. The process repeats on the now smaller list of attributes until the tree

is complete (all attributes have been used and are found in the tree – with a few base cases

as exceptions to this rule).

The advantage of using decision trees is that they are simple for humans to understand, do

not require extensive data pre-processing (like normalization, etc), handle both numerical

and nominal data attributes (a nominal attribute is a ‘class’ attribute), the models are

consistent in that they are robust and are statistically provable to obtain certain results and

also due to the open nature of the algorithm, it’s progress can be followed step-by-step,

unlike a neural network for example.

On the other hand, there are some disadvantages. The problem of generating the tree is a

difficult task. During the tree building process, the decision to pick an attribute over another

at each node is actually a problem of a local optimum usually solved by greedy algorithms.

The addition of genetic algorithms shifts the local to a global optimum problem, yielding

better results. Another problem would be that because of their features, some problems

cannot be modeled very well as a decision tree, even though it would seem so at first sight.

Problems such as overfitting [56] and attribute bias [57] arise.

Unlike a decision tree, a decision list is an ordered list of rules of the type if-then-else.

These rules are determined from the training set. Given that each rule has a weight

assigned, the list obtained by sorting the rules descending by their weights constitutes a

decision list. For every word and its features, the list is checked and the rule that has the

highest score matching the features of the word will give the sense of that word.

IV.1.1.2. Neural network WSD

An artificial neural network (ANN) is a mathematical model that tries to replicate the

behavior of real biological neurons. An artificial neuron also tries to replicate a biological

neuron by implementing a mathematical function such as that when it receives an input (it

receives values on one or more connections from previous artificial neurons) it uses a

function to evaluate the inputs and produce an output. The function could be, for example,

the sigmoid function or the step function. Such a network interconnects a number of

artificial neurons in different patterns. Depending on the type of ANN, its structure may

change during the evolution of the network. An ANN can be trained on labeled examples to

induce an input type � conditioned output behavior.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 40

ANNs have been in constant development since the 40s [58]. A short classification of

ANNs used in WSD based on the distinction between connection patterns between units

and the way data is being propagated: Feedforward Neural Network – Without any loops or

cycles, here the information moves in only one direction, from the input nodes through the

output nodes. While this is the simplest of ANNs, it is one of the most used. Radial Basis

Function (RBF) – the network has a hidden layer of radial units, each modeling a Gaussian

response surface. RBF is a real-valued function which has built into a distance criterion

with respect to origin or some other point called center. Kohonen Self-organizing Neural

Network (SOM) – this network is characterized by a set of artificial neurons that learn to

map points in an input space to coordinates in an output space – this is a form of

unsupervised learning but is presented here for reference. The input space and the output

space can have different dimensions and topologies. Learning Vector Quantization Neural

Network (LVQ) – neural networks that consist of two layers. The first layer maps input

vectors into clusters that are found by the network during training. The second layer maps

merges groups of first layer clusters into the classes defined by the target data. An LVQ

system is represented by prototypes of the classes parameterize, together with an

appropriate distance measure, a distance-based classification scheme. Recurrent Neural

Networks – (RNNs) – here the data flow is bi-directional. This property allows for a large

number of variants of this base type, like fully recurrent networks, simple recurrent

networks, hierarchical RNNs, etc.

The usage of ANNs for WSD can take many shapes. One is to consider the neurons as

words. Then, during training, words that appear in context are activated together, thus

linking the words in context to word senses [59]. Later uses of this method involve linking

sense to current knowledge repositories [60]. Numerous attempts have been made to use

ANNs to the task of WSD, some of them with good results [61] [62].

One of the disadvantages of using ANNs is that they require a lot of training data to output

usable results, a problem even for the existing annotated corpora today. Also, they have a

large number of human-adjustable parameters. While this can be seen as both an advantage

and a disadvantage, these parameters make replicating previous work (previous results)

difficult and thus makes comparing the performance of this class of systems even more so.

IV.1.1.3. Instance-based WSD

In this approach to WSD a classifier is built from example instances. This class of

algorithms does not perform explicit generalization, instead evaluates each new instance to

the previous instances from the training set (lazy-learning). The advantage of this type of

learning is that it can adapt to new data instances, and does not have to re-train on the entire

training set from scratch.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 41

As instances are seen as feature vectors, they can be represented as points in an n-

dimensional feature space.

Because the space is n-dimensional, a metric to evaluate the ‘distance’ between two

instances is required. Many distance metrics can be employed, one of the simplest being the

Hamming distance:

(��)'�, '�* = 	���"('��, '��)�

���

 (19)

where ti and tj are instances, wk is the weight associated to attribute k and I(tik,tjk) is the

identity function that is 1 if tik = tjk or 0 otherwise.

Another simple distance (if it can be applied – working with real-valued features) is the n-

dimensional Euclidian distance:

+,�)'�, '�* = 	-�('�� − '��)��

���

 (20)

The k-Nearest Neighbor algorithm is the most basic algorithm in the instance-based

learning class. A new instance is classified as belonging to a certain class based on the

classes of its closest k neighbors – the class of the new instance is the class of the majority

of neighbors.

The training of a kNN algorithm is simply storing each instance as an n-dimensional point.

In the classification phase, a new point has its distance calculated and the majority of its

closest k neighbors gives the class of this new instance. While simple, the algorithm does

suffer from imbalances. Classes with many representatives will likely be selected more

often simply because the probability that the majority of neighbors of any point belong to

that particular class. Techniques to alleviate this issue exist, such as weighing the value of

each neighbor based on the distance from the new instance. A value of 1/d, where d is the

distance (expressed as a real value in the particular case of real-valued features) is called

linear interpolation, helping dampen the influence of an uneven data set.

The choice of k is human adjustable, low values favoring noise while higher values being

less susceptible to noise but failing to make good distinctions among classes. Cross-

validation is one technique used to estimate k.

Applied to WSD, the major difficulty is creating a good feature vector, meaning

determining the best mix of attributes to describe an example instance. While this is a major

issue with the vast majority of ML systems applied to WSD, it is even more relevant here

as the kNN algorithm, for example, is very susceptible to imbalanced datasets. Features can

be extracted in many ways: part-of-speech tags, stemmed form (for verbs), singular form

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 42

(for nouns), words adjacent, head of phrases, tags extracted from the syntactic tree or the

dependency tree, capitalization, distance to other relevant words, string similarity measures,

number of other certain words, etc, can be used to create a feature vector. Several systems

using kNN have been implemented [63] [64], with good results.

IV.1.1.4. Probabilistic Classifiers

The Naive Bayes (NB) classifier is the basic example of probabilistic classifiers, and at the

basis of advanced probabilistic-based systems.

A NB classifier is a probabilistic classifier that uses Bayes’ formula while making strong

independence assumptions between features. The general model for a probabilistic

classifier is:

�(#|��, … , ��) (21)

where C is the dependent class variable, with fk the features for a particular instance.

Estimating p will yield the class of that instance. However, when the number of features n

is very large or the number of possible values for the features is very large, directly

computing such probabilities is not practical. Using Bayes’ theorem that states that:

%�.|/� = 	 %�/|.�%(.)%(/) (22)

and also using the independence assumption that a feature fi is independent of fj, meaning:

�)��0#, ��* = ���� ,#�		��'ℎ	� ≠ 1	 (23)

then rewriting iteratively the first formula, the conditional distribution over C (class

variable) becomes:

	��#|��, … , ��	� = 	�(#)!����|#��

���

 (24)

The obtained formula is now easily computable. A scaling factor can be applied to adjust p.

Applied to WSD, the NB classifier computes the probability of each sense of a given word

to appear, given the feature vector for that particular word, assuming that there are no

dependencies between individual features. p(C) can be estimated as the frequency of a

certain sense while p(fi|C) is the frequency of feature fi when used in the sense C.

While this approach produces surprisingly good results in spite of the independence

assumption [65] [66], and several systems have been created in the late 90s based on this

method [67] [68], its use in recent systems is minimal, being superseded by better

performing supervised approaches, such as random forests or SVMs.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 43

IV.1.1.5. Support Vector Machines

Support Vector Machines (SVM) are a useful tool for many IE/IR/NLP applications,

including WSD. Because of its importance, the SVM concept was presented in more detail

in an earlier chapter. In short, a SVM tries to obtain an n-dimensional hyperplane that

separates two instance classes. Based on the support vectors, a SVM constructs the

hyperplane by maximizing the distance between the two classes.

In WSD, a SVM classifier is trained on a set of instances (a feature vector and the sense

assigned to the word that yielded the feature vector) and used to classify new, unseen

instances, similar to the NB classifier. However, as the SVM is a binary classifier, so to be

used to determine several senses (several classes) either many SVM classifiers are trained

in a one vs. all strategy or one vs. one strategy and then combined as to overall offer a

multiple class answer.

Another way to use the SVM (different from the NB style) in cases where the number of

features is too large to be tractable is to create custom kernel functions. In essence, a SVM

computes the dot product between two vectors. The kernel function (which is in fact a

similarity function between two vectors) is overridden to compute the dot product in a

tractable way (meaning using heuristics that do not require the features to be explicitly

expressed, for example). This ability makes the SVMs a versatile tool in many fields.

Applied to WSD [69], the SVMs have been shown to perform very well [70], usually better

than other supervised approaches. The most frequently used approach here is the standard

extraction of a feature vector for every instance word as well as its class (sense), train the

classifier on as many training instances as possible, and then apply the created model to

new instances.

IV.1.2. Unsupervised Disambiguation

Unlike supervised approaches, in most cases unsupervised methods attempt to cluster

words together rather than identify a class for each word from a lexical resource containing

structured words / word senses. Assuming that a word has a sense when surrounded by a

certain context and another sense in another context, unsupervised disambiguation tries to

cluster together words in common contexts.

Because of the lack of using an external resource (an ontology, taxonomy or dictionary)

based on which to link words to word senses, most unsupervised WSD systems cannot be

compared or have their performance clearly evaluated.

There are three main approaches: word clustering, context clustering and co-occurence

graphs.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 44

IV.1.2.1. Word Clustering

Word clustering approaches try to cluster words that are semantically close. One such

approach [71] identifies words similar to a word w based on the information content of

individual features like syntactic dependencies. To discriminate between word senses

(which at this stage cannot be done as the similar words associated to w can represent any

sense of w) a word clustering algorithm is applied. The similar words are sorted by their

similarity to w. Next, w is placed as a root node in the currently empty ‘sense’ tree. Each

similar word is then added to w (and in later stages to previous similar words) so that

iteratively a tree is constructed. Finally, each similar word that is a child of w is considered

as a distinct sense (as it contains under it further words that describe that particular sense).

Other methods that follow the same general idea have been developed. For example,

instead of a tree, a matrix is created where the value of row i and column j is the similarity

of words i and j, and then a clustering algorithm is applied on the matrix.

IV.1.2.2. Context Clustering

The basic strategy for unsupervised systems is context clustering. A feature vector, or in

this scenario a better name would be a context vector, is used to represent each encountered

word. The grouping of these vectors represents word sense clusters. The simplest form of

such vectors is a standard frequency count of surrounding words. Given the n most frequent

words in a text (pruning is usually performed to not consider words that are very infrequent

– also done because the number of distinct words can be very large), the context vector of a

word wi would be an n-length array of values, on each position (dimension) having the

frequency of that word measured in a certain window (a fixed number of sentences for

example).

�2�'3�'	43�'25	2�	�� = (�536	�	
	� ,�536	�	

	� , … , �536	�	
	�)

�536	�	
	� = �536,3���	2�	�25�	��	��	'ℎ3	����2�	$,552,����7	��

Having ‘translated’ each word into a context vector, similar such vectors can be grouped

into clusters using different similarity metrics. One such metric is the cosine similarity,

where the similarity between two vectors is their dot product divided by the norm of each

vector. More specifically, it is the sum of the product of their individual dimensions divided

by the root of the product between the individual sums of each vector’s squared component.

The lower the cosine value, the more similar the vectors are.

Applying different clustering algorithms on the collection of context vectors will yield

sense clusters [72] [73]. Methods to improve results have been studied, such as applying

Latent Semantic Analysis [74] on the matrix obtained from the context vectors

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 45

(cooccurence matrix). This will reduce the dimensionality and arguably improve the

context vectors by reducing ‘noise’ (less relevant words in context). Also, it is helping with

the polysemy problem where similar words are so-called ‘merged’ during dimensionality

reduction. Another method to improve results is to create better context vectors, such as

adding features of the word itself or other external information like glosses taken from a

repository such as WordNet [75].

IV.1.2.3. Co-occurrence graphs

Another approach to unsupervised disambiguation is to use co-occurrence graphs. Such a

graph has words as nodes and the links between the nodes are syntactic relations extracted

from the text in which the words occur [76]. For every word in a text, a graph is built

starting from it.

Given the co-occurrence graph (also seen as an adjacency matrix), several algorithms can

be applied. [76] proposes both a method to create the graphs as well as using a Markov

clustering algorithm to cluster senses together.

Another proposed algorithm is HyperLex [77]. The graph in this instance is created

between words that appear in the same paragraph. A word is added only once even if seen

multiple times. The edges in this graph are assigned weights representing the co-occurrence

of the linked words in the paragraph. The weight is based on the frequency of each word

and the frequency of the co-occurrence of the two words, in such a way as two frequently

co-occurring words have a weight closer to zero, and infrequently co-occurring words

closer to one. Next, hub nodes are selected from the graph based on their connection

degree. These hubs represent the ‘senses’ of the word, and are linked to the targeted word

itself by virtual zero-weight edges. Next, the Minimum Spanning Tree algorithm is applied

starting from the root word, linking all hubs. A score vector is then assigned to the word.

The score vector contains on each position a score computed between the word and the hub

whose index corresponds to the index in the score vector. This score is a distance based

metric, calculating the distance in the MST tree between the word and each hub. Every

word receives a score vector. Next, the score vectors are summed and then the hub most

relevant to each position (word index) is chosen as the sense for that particular word.

PageRank [78] is another well known algorithm that has been applied to WSD. Given a

graph, the degree of a node P(Vi) is:

%(8�) = �1 − ��+ � ∗ � ��� ∗ %(8�)∑ ��������	��→	�������	��→	��

(25)

where d is the damping factor and w is the weight of an edge.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 46

Agirre [79] applied PageRank to WSD by considering weight w as being the co-occurrence

probability between two words. Thus, the degrees of every node is computed and the top

scoring nodes are picked as hubs, similar to HyperLex. Both HyperLex and PageRank

obtained good results when applied to WSD, but still lower than standard supervised

approaches.

Co-occurrence graphs can be extended in multidimensional space, where the assumption of

a single link between co-occurring words is no longer a limiting factor. This is based on the

assumption that that two or more words are usually combined to form a relationship of

concepts in the context. Also, planar graph-based approaches fail to model collocations or

multi-word terms. [80] proposed such a model. An edge in this multidimensional graph is

called a hyperedge and is able to model the relation between multiple words – a hyperedge

is a set of vertices. Thus, words are seen as vertices and relations between them as

hyperedges. The degree of a vertex becomes the number of hyperedges it belongs to, and

the degree of a hyperedge is the number of vertices it contains. Related nouns are grouped

into hyperedges that are weighted by calculating support and confidence parameters. Both

parameters are based on frequency functions of co-occurring words. Next, a variant of the

HyperLex algorithm is used to select the hubs of the hypergraph, based on the degrees of

the vertices. The results of [80] are average, achieving high entropy and purity performance

(values that measure different aspects of a system’s performance) measures that outperform

the most-frequent-sense baseline, however having low F-Scores.

IV.1.3. Knowledge-Based Disambiguation

Knowledge-based (KB) WSD is a class of methods that uses the knowledge drawn from

lexical resources such as dictionaries or thesauri and also from the raw text that is analyzed.

Some of the advantages of knowledge based disambiguation are that the scope is generally

all-words sense disambiguation, as opposed to corpus based methods that usually restrict

the set of candidate words for disambiguation; the target document can be from any source

as opposed to supervised methods for example that require a similar annotated document to

train on; KB methods do not require annotated documents making them very desirable to

apply to other languages for example, or on domains where there are no large corpora to

work with.

Regarding knowledge sources, dictionaries provide for every word contained in them a list

of meanings, definitions and examples that help clarify the meaning of the word for each of

its senses. A thesaurus adds basic relations between word meanings (ex: synonymy

relation). The further addition of other relation types and the ordering of concepts in

specific forms (like a tree or directed graph) define a semantic network. For example,

WordNet organizes the noun synsets into a directed graph in respect to the Is-A relation

(hypernymy). Moving to more complex examples, an ontology labels links between

classes/entities. A graph is a good representation of an ontology, as the directed edges are

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 47

the relations between the graph’s nodes, represented by classes/entities. For example, the

YAGO ontology (presented earlier) has a graph structure (including cycles) while a tree-

like structure extracted from WordNet (actually the WordNet hypernym tree) can be seen as

the head of the ‘pyramid’, with every entity in the ontology linking to a leaf of the tree. An

ontology has a defining schema. If more of these schemas can be merged, meaning that if

correspondences between relations or classes/entities from two different ontologies can be

found, then they can be seen as an aggregated ontology. For example, DBpedia 41 is a

complex collection of a large number of domain ontologies linked together.

As a classification of knowledge based methods we enumerate the following classic

approaches: the Lesk Algorithm, syntactic similarity measures, selectional preferences,

other heuristic methods.

IV.1.3.1. Lesk Algorithm

This classic algorithm [81] is one of the first attempts at all-words WSD. Essentially a

dictionary-based approach, the Lesk algorithm has provided not only a starting point and a

general method of WSD but also a consistent and rather good baseline used for evaluating

other systems.

The classic Lesk algorithm tries to identify word senses based on evaluating the

overlapping among their sense definitions. Considering n words, each word having a

number of senses, the algorithm evaluates all combinations of senses, for each combination

measuring the overlap in the chosen senses’ definitions. The overlap is calculated as the

number of words common in the senses of two or more words. The initial precision

reported by Lesk in this initial attempt (1986) was around 50-70%. The dictionary resource

used was Oxford’s Advanced Learner’s Dictionary.

An variant of the Lesk algorithm is the use of annealing. Given that the original algorithm

tries to evaluate all possible combinations of senses, for many words with many senses this

leads to an intractable problem due to the exponential nature of the problem. Simulated

annealing is a function that reflects the overlap of a certain choice of senses, with the

minimum value corresponding to the correct sense set. In an iterative manner, starting from

the most likely sense of each word, one sense from a word is changed to another. The

change is kept only if the function has a lower value (meaning a higher overlap). When

there is no change in score, the iterations stop and the current sense set is chosen as correct.

Another variant is the simple Lesk algorithm. This approach disambiguates words in turn,

instead of considering them all at once. The idea here is to choose the best sense of a word

that overlaps with its context. Chosen senses for words do not influence the choice for the

41 http://wiki.dbpedia.org/Datasets

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 48

senses of other words. [82] showed that the simplified Lesk algorithm showed an

improvement of 16% over the original algorithm in Senseval-2’s all words English task.

Yet another approach involves using augmented semantic spaces [83] where not only the

definition of the target word is used, but also the definitions of related words

(hyper/hyponyms, holo/meronyms, etc.). On the Senseval-2 task of English nouns this

algorithm doubled the precision up to 32% of the original Lesk.

Overall, the best performing variant, both in performance and speed (due to the exponential

nature of the original algorithm) is the simplified Lesk.

IV.1.3.2. Semantic Similarity

The semantic similarity approach is based on the premise that words sharing common

context have similar senses. Thus, the task of WSD becomes the task of measuring the

semantic distance between words and surrounding context.

The semantic measures are based on some type of semantic repository. The most often used

such resource is WordNet. The table below offers a fast overview of semantic similarity

measures, some of which were presented in an earlier section:

Table 1. Different semantic similarity measures

Measure Expression Notes

Resnik

(1995)

����� = 	−log	(����)

��	���,�	� = 	��(
�����,�	�)

IC(C) is the information content of a concept, usually

quantified as the inverse log of the frequency in a corpus

LCA is the least common ancestor of two concepts C1, C2

Agirre

and Rigau

(1996)

��
��
�(�) = 	
∑ �

#	�
	������	�
	�

����(�)

desc (C) is the number of concepts in C’s hierarchy sub-

tree (where C is root)

Wi is the weight of a concept in the hierarchy expressed

as the number of hyponyms of the concept adjusted by

an empirically determined value

The sense with the highest ConDens is the chosen sense

when using this semantic measure in a system. The

approach is similar to Lesk’s, but using this measure to

determine similarity.

Jiang and

Conrath’s

(1997)

��	���,�	� = 	2 ∗ ���
�����,�	��

− 	������ − 	��(�)
Improvement over the Resnik similarity measure

Lin

(1998)
��	���,�	� = 	

2 ∗ ���
�����,�	��
������ + 	��(�)

 Improvement over the Resnik similarity measure

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 49

Hirst and

St-Onge

(1998)

��	���,�	� = 	� − ���ℎ���,�	� − �
∗ ��

dc is the number of direction changes

C and k are adjustment constants

Path(C1, C2) is the path length between the concepts

Leacock

(1998)

��	���,�	� = 	−log	
���ℎ(��,�)

2 ∗ �

D is the depth of the taxomony

Mihalcea

and

Moldovan

(1999)

��	(��,�) = 	
∑ �

���

log	(������	�)

H12 is the number of common words in the definitions of

C1 and C2’s hierarchies

Wi is in this case the depth of the concept in the hierarchy

These measures can be applied in different ways. Due to the fact that in a sentence there

can be many words that need disambiguation, the method of calculating overall similarities

such as to take into account how any one word influences another is opening an array of

different methods on how to actually apply these measures. Two distinct categories emerge

when considering context: either local or global.

When considering local context, the general consensus is that a window of fixed size is

inspected around each target word. For example, [84] applied the measures above to a data

set from Senseval-2 using a context window of size k = 1, meaning adjacent words. The

best scoring method was JCN (Jiang and Conrath’s), with Hirst and St-Onge’s being the

most consistent among different words.

Global context relies mainly on another type of approach: lexical chains. A lexical chain is

a list of diverse words (word distance is not important) from a text that are related and

generate context and continuity in a discourse.

A lexical chain is usually created in the following manner: for each candidate word in a text

(most usually nouns) find a suitable lexical chain and add the word to the chain, or else start

a new chain. A word is added to a lexical chain if its semantic similarity to the words

preexisting in the chain is above a threshold. Several systems that create lexical chains and

thus the senses of words have been proposed: Galley et all. [85] obtained a 61%

disambiguation precision for a SemCor corpus; also on a SemCor corpus Mihalcea [86]

reported a 90% precision and 60% recall using chaining started from anchor words (words

that can be reliably annotated with its corresponding meaning).

Using a graph algorithm for sequence data labeling, Mihalcea [87] obtained good results

(55% precision) compared to the baseline set by the simplified Lesk algorithm (48.7%

precision) on the all-words English Senseval-2 task.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 50

IV.1.3.3. Selectional Preferences

The concept of selectional preferences means detecting the links and relations between

words in text, thus constraining the possible meaning of those words. Relations between

concepts emerge, based on an array of features like concept class (Picture – Color, where

the noun representing the Color class means a color due to the usage in a Picture context),

part of speech (verb – noun, where the noun’s senses are restricted by the action expressed

in the verb), etc.

As with most approaches, learning selectional preferences depends on the amount of

training data. The more senses are encoded/annotated in a text, the larger amount of

selectional preferences can be extracted and the better the performance of the WSD.

The simplest learnable constraints in a text can be word-to-word facts. Such a fact can be

expressed as the frequency of count of two words that stand in a relation. Two words w1

and w2 that stand in relation R are expressed as cnt(w1,w2,R). Extending to conditional

probabilities, considering that w1 depends on w2 is expressed as:

%���|��,�� = 	��'(��,��,�)/��'(��,�) (26)

If considering semantic classes (suggested initially by Resnik in this thesis [88]) then

selectional associations can be the measure of the semantic fit between a word w and a

semantic class C. If the word is linked to the class by a relation R, then the conditional

probability of the class C dependent on the word w is:

%�#|�,�� = 	��'(�,#,�)/��'(�,�) (27)

where ��'��,#,�� = ∑ ���(,	�,)

���(�)
�!���		�	∈	" , then the selectional association is:

�$$2���,#,�� = %�#|�,�� ∗ log	(%(#|�,�)/%(#))∑ %�#|�,�� ∗ log	(%(#|�,�)/%(#))"
 (28)

Extending even further to class-to-class selectional preference Agirre and Martinez [89]

propose a measure that tries to maximize the co-occurrence of the class of a target word

with the class of its co-occurred word. The measure is rather complex and involves the

calculation of several word-to-word conditional probabilities, and then choosing the

maximum scoring choices.

[89] tested these measures and discovered that on the noun data set of SemCor the class-to-

class disambiguation works significantly better than word-to-word and word-to-class, but

still under the most frequent sense baseline. Other systems have been implemented,

including an unsupervised WSD system [90] that learned selectional preferences without a

sense-tagged corpus, but none exceeded the baseline.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 51

IV.1.3.4. Heuristic Methods

The first and very basic heuristic method is the most frequent sense. For several reasons

this heuristic is used as a baseline in WSD systems. It is based on the observation that while

words have several meanings, there always is one meaning that is used more often than the

others. Thus, for every word a most-frequent-sense can be determined by simply counting

the senses frequency of that word on a corpus as large as possible. Because of its simplicity

and ease of implementation, the most-frequent-sense is the baseline that other systems

should exceed [91]. However, this heuristic does have limits. For example, if considering

domains, the sense distribution for each word changes increasingly with the specialization

of the domain. Also, the measure is dependent on the available annotated corpus used to

extract sense information. The larger the corpus, the better the frequency distribution

(considering that this method has a clearly established upper bound performance).

Another used heuristic is the one-sense-per-discourse [92], stating that a word tends to

preserve the same sense in the entire discourse. This immediately simplifies the problem of

WSD, meaning that from several appearances of a word, the clearest disambiguation (the

chosen sense should have the highest confidence among other candidate senses) is chosen

as the sense for every appearance of the word. In the rather small experiment, [92] showed

a 98% correlation between the appearances of a word and its senses. The experiment

covered only words with two senses. This result showed that the heuristic was rather good.

However, in a later experiment where words were allowed more than two senses [93], the

hypothesis that a word will mean the same thing obtained a poorer score, where a third of

the words were found to have different senses in the same discourse. This leads to the

conclusion that where fine-grained word disambiguation is concerned, this heuristic can

actually decrease a system’s performance.

Scaling down the one-sense-per-discourse heuristic yields the one-sense-per-collocation,

where the assumption made is that a word keeps its sense when used in the same

collocation. The correlation between a target word and its context is strong, with the

strongest links being to the words closest to the target word. However, similar to the

previous heuristic, the more senses a word has, the worse this assumption holds.

IV.1.4. WSD Bounds

The lower and upper bounds are measures that are needed to evaluate the performance of a

system.

The lower bound is the minimum acceptable performance for any system. An example of

such a measure is the random baseline, where the choices for senses are made randomly.

Any system should outperform this baseline. A more difficult baseline is the first sense,

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 52

where the most frequent sense of every word is always chosen. This lower bound is actually

quite difficult to exceed.

The upper bound is the maximum performance that a system could obtain. The upper bound

surprisingly is not a 100% score for every WSD system performance measure. The standard

upper bound usually chosen is the ITA – Inter Annotator Agreement, the percent of word

senses that human annotators (at least 2) agree upon given a text to be sense-disambiguated.

For coarse grained tasks (few senses per word) the percent is rather high, reaching 90%

[91]. For finer grained tasks (many senses per word, such as the senses in dictionaries or

WordNet for example) the percent drops in the 60-80% range [94].

One of the big problems for WSD is the granularity of senses. For example, using WordNet

for sense inventory, a Senseval-3 system obtained 65% accuracy on the all-words English

task [95]. This performance raises questions on both sides: the performance is rather good

given the upper bound ITA; on the other side the low ITA means that there might be a

problem with the senses definitions themselves – if humans cannot exceed a certain percent

then maybe the fine-grained WSD problem should be redefined.

The ITA upper bound raises interesting questions [96] such as what happens if a system

exceeds the ITA bound, and is better than human annotators, especially for the fine-grained

task where the ITA score is not very high.

A different upper bound is considered to be the ‘oracle bound’. Such a system always

knows the correct sense for every word out of the available senses. In systems

implementing multiple WSD sub-systems, its accuracy is determined by the number of

word instances for which at least one of the systems outputs the correct sense.

IV.1.5. Evaluation metrics

To evaluate a WSD system a few standard metrics are used:

Precision is percentage of words that are tagged correctly out of the words addressed by the

system.

Recall is the percentage of words that are tagged correctly out of all words in the test set.

Specifically to the WSD domain, recall is also called accuracy.

Coverage is the percentage of words that the system has evaluated out of all words in the

test set.

Example: If a system has 100 words to evaluate, out of which it attempts only 75 and

correctly disambiguates 50, then the precision P will be 50 / 75 = 66% while recall R will

be 50 / 100 = 50%. This system’s coverage C is 75 / 100 = 75%.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 53

It can be seen that if coverage C is 100% then P = R, else, R will always be smaller or at

most equal to P.

The classic F score in WSD is usually the F1 measure defined as: 9� = �#

#�
, obtained from

the general Fα measure, where 9$ =
�

$�

�
�(��$)�

�

= 	 %&���'#

&�#�
, with � = 	 �

&���
. Choosing β = 1

balances precision and recall, obtaining the F1 metric. This is a good measure for systems

with less than 100% coverage. However the integrated F measure can hide a very bad

precision or recall. If either P or R is almost 100% while the other is close to zero, then the

F measure will still be around 50%.

As [96] summarizes, the F measure is not always a good indicator of system performance.

[97] proposed an evaluation metric that if a system performs a wrong classification, then it

should be penalized on the distance of choice it has made to the correct sense. If the chosen

wrong sense is a fine-grained distinction of the correct sense then the system should be

penalized less than if it had chosen a sense which was very far from the correct sense (a

coarse grained distinction). Other methods have been proposed, but because most systems

are evaluated on the precision, recall and F1 measures, then subsequent systems will also

use the same measures, to have a common ground on which to be able to compare to earlier

attempts.

IV.2. Named Entity Recognition

Named Entity Recognition (NER) is a task in the area of Information Extraction that refers

to the identification of certain entities in a text. A rather recent development as a stand-

alone task [98], the Message Understanding Conference 6 (MUC, 6
th

 edition, 1996)

outlined the need to entity identification as a needed component for better IE systems.

Initially termed Named Entity Recognition and Classification, the task handles recognition

of persons, locations, organizations, etc. as well as certain numeric values such as dates or

money amounts.

Even though the term was ‘officially’ used for the first time in 1996, works that undertook

subsets of NER were published in the early 90s. Initial attempts to detect restricted

categories of entities such as company names [99] slowly evolved to more and more

complex systems, and with the formalization of the task in the MUC conference, NER

research gained speed.

Before presenting the main approaches to NER we will present some of the aspects of the

task. The first and most important aspect is the entity types searched for and used. As the

name of the task suggests (Named Entity Recognition), the targeted entities are primarily

proper names, most often proper nouns and/or capitalized words (ignoring common nouns

that start a sentence).

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 54

Traditionally, there are three large categories that a named entity could be: a person, a

location or an organization. These three categories were proposed as initial designators for

entities at MUC conferences, and they have remained in use unchanged so far, most

systems being developed to detect these three categories. There is also a forth category,

which is the ‘other’ category, or the miscellaneous category, encompassing named entities

that do not fall in the other three. Systems that further specify this very simple division

exists, trying to detect fine-grained entity recognition to subclasses such as musician, poet,

writer for the people category, or village, city, state, country, continent for the location

category [100].

Other types of entities suitable for detection with a NER system are dates, time, money,

percents. These types are accepted as candidates for the majority of systems; there are

however some purpose-built systems that detect fringe-entities like phone numbers, email

addresses [101], person titles (detect from “Dr. Eng. Smith” that person Smith has the

Doctor and Engineer titles), movie or literature titles, job titles [102] and so on. Also, the

biomedical domain, one of the most active sub-domains, has proposed a large number of

systems that detect domain entities like proteins or drugs in medical text [103].

Extending the entity range even further, the “open” NER proposes the idea of unrestricted

entity type, meaning a fine-grained recognition of entities, down to very specific categories

like truck, car, sports-car, convertible, etc [104]. This approach requires the predefinition of

the fine-grained categories thus requiring an ontology/taxonomy to represent them.

Another aspect regarding NER is the language. By far, English is the most studied language

regarding NER systems. Recently however many languages attract attention, like German

or Arabic. Special tasks in domain workshops like CONLL or MUC have Chinese or

Japanese NER tasks.

Also, the genre of the analyzed text is important. The development of systems for specific

genres such as scientific texts versus standard news articles (for example) shows a sensible

performance difference [105], marking the text’s genre as an important aspect of a NER

system.

IV.2.1. Classification of NER Approaches

IV.2.1.1. Supervised Learning

Just like in WSD, supervised learning is the method currently most often used in NER. It is

relatively straightforward to apply, requiring the modelization of the problem to fit a certain

supervised learning algorithm. As WSD, the core idea is to extract a number of features for

every entity and then apply a classification algorithm. Virtually all classifier types that were

suitable to model the NER problem were experimented with.

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 55

Initial attempts to model the NER problem as a Hidden Markov Model proved relatively

successful [106]. A Markov Model is a stochastic model in which the Markov property is

assumed: the present state of the system does not depend on the past or the future states. In

a HMM the named entity recognition problem is seen as a Markov process with unobserved

hidden states. While in a normal Markov Model the states are directly observable with the

state transition probabilities as the only parameters, in the HMM the states cannot be seen,

only the output is observable, which is dependent on the states generating it – the states

through which the model passes are ‘hidden’.

where si are the states the system passes through, oi are the outputs of the system, the dotted

arrows between the states are the state transition probabilities and the arrows linking the

states to the outputs are the output probabilities.

A HMM system tries to find, given an output sequence the most likely set of state

transitions and output probabilities. As such, given a set of labeled entities and a number of

features for each one, the system determines the most likely parameters that output each

label in turn, and then applies the trained model to new unseen entities.

Decision trees, presented in the WSD section can also be applied to NER. Learning to

discriminate among features to obtain the label of an entity as the leaf in the learning tree

was also applied with limited success [107]. This approach works best with a limited

number of entity categories, and depends greatly on the extracted features.

Maximum Entropy Models, also known as multinomial logistic regression models,

implement a regression model that generalizes logistic regression by allowing several

possible discrete outcomes. Unlike generic regression models which estimate continuous

values, when the output variables are nominal (categories), the ME model is used instead.

This model does not place independence restrictions on the independent variables (input

variables / entity features) like the Naïve Bayes, thus allowing a more realistic modelization

and accepting sacrificing the tractability of the problem for large feature spaces. One of the

first uses of the ME model applied to NER was in the 7
th

 edition of the Message

Understanding Conference [108].

SVMs, presented in detail in chapter II.2.1. are among the best classifiers used in the NER

field. Together with CRFs (chapter II.2.2.) represent the state-of-the-art supervised learning

s1 s2 s3

o1 o2 o3

Figure 6. A Hidden Markov Model example

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 56

techniques applied to NER. For example, the NER system used in this work based on CRFs

is the Stanford Named Entity Recognizer42 [109] that in the CoNNL 2003 English news

dataset obtained 92.15% precision and 92.39% recall.

IV.2.1.2. Semi-supervised Learning

Semi-supervised learning started from the observation that to be successful, supervised

systems require large training sets that are difficult to create. Thus, different techniques and

approaches have been developed that circumvent to a degree the training-data size issue.

One such method is the ‘bootstrapping’ where initial seeds are given to start the learning

process. The seeds might take many forms, for example known names for organizations.

The system then searches on a corpus of data for sentences containing the seeds and

features surrounding them, extracting patterns. After a system is sufficiently certain that the

pattern is valid, it applies that pattern to extract more organization names. After a large

enough number of iterations, the system has collected a training corpus of sufficient size for

the learning process. The main idea is that allowing a certain variation on the valid patterns,

new entities and more importantly, new contexts will be discovered after a number of

iterations.

There are many ways to detect such patterns. Regular expressions are one of the first

techniques applied [110], along with using syntactic features such as part of speech and

noun phrase analysis [111]. Mutual bootstrapping consists of a set of entities and contexts

(patterns) that each grown in size in turn. Initially starting from a number of seeds, all

found contexts are kept, and then using those contexts in turn new seeds are found, and so

on. Such an algorithm is very sensitive to noise [112].

Other approaches use NER systems to generate initial seeds [113]. Use of syntactic

relations instead of RegEx (regular expression) patterns is also a possibility. A very

interesting showcase of the use of semantically related words is performed by [114] where

allowing patterns containing words in the same semantic class a precision of 88% was

achieved when applying their system on the web, starting from only 10 seed pairs.

IV.2.1.3. Unsupervised Learning

NER approaches using unsupervised learning are similar to the WSD approaches using the

same unsupervised methods: attempt to group together entities that are similar. As such,

entities that are found in similar contexts will be grouped together. Another way to evaluate

the similarity of entities is to use their semantic type thus requiring lexical resources like

WordNet. [104] attempted to use the semantic entity types gathered from WordNet, where

42 http://nlp.stanford.edu/ner/index.shtml

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 57

to every top level WordNet class a certain topic was assigned to by counting the co-

occurring frequency of the word in a corpus. Then, for every target entity in a document the

context is analyzed and depending on the words found in the context, the most likely

WordNet class is assigned.

Another unsupervised learning method is to detect named entity hyponyms and hypernyms.

This is accomplished by identifying patterns that indicate hypo/hypernym relations (ex: “A

such as B” indicates that A is a hypernym of B) [115].

IV.2.2. Named Entity detection and recognition techniques

This section reviews the major features used in NER systems to detect and tag the targeted

entities. [116] provides a very good overview of the feature space. A feature is a unit of

information about a targeted word/entity. It can be a number, a Boolean value, a nominal

value or a string. For example, the POS tag is a nominal value because it is a value

belonging to a restricted set of possible POS tags. The length of a word (the number of

characters) is represented as a number. The fact that an entity is the first word in a sentence

is represented a Boolean true/false value.

IV.2.2.1. Word Features

Word Case – usually a Boolean value signaling if the word is capitalized, if contains all

uppercase or lowercase letters, or a mixture of both.

Punctuation – also usually a Boolean value signaling if the word ends with a punctuation

mark, or if it contains punctuation marks inside the word (ex: “Dr. Smith”)

Digit – a Boolean value if the word is composed only of number; if the word contains

numbers inside, etc; special patterns can indicate that a number is a date, a year, a zip code,

a phone number, or more specific cases such as an IP address.

Part-of-Speech – the POS tag is usually represented as a nominal value.

Character – if it is a single character. In context maybe it represents first person pronoun,

for example.

Word-form – there are several features that can be used, such as the word suffix and prefix

(string values), singular form (plural� singular); in case the word is a verb then stemming

can be applied to obtain the root form, etc.

Word-type – this category also contains several possible features. For multi-word tokens

the word count is a possible feature. The lowercase and the uppercase versions of the word,

non-alphanumeric characters and n-grams are also good features. Pattern features are also

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 58

found in this category. Pattern features can be used to encode character types such as using

a character for all uppercase letters, another character for lowercase, yet others for all

punctuation or numerical characters.

IV.2.2.2. List Features

List features form a different category of features altogether. Lists (also known as

dictionaries or gazetteers) contain an enumeration of words belonging to some category.

The simplest examples can be the list of months in the year, the list of popular English

names, the list of capital cities, the list of countries, etc. Below are summarized possible list

types:

General lists – these lists contain usual generic information, like the days in a week or

stop-words. Other larger general lists include common nouns or common verbs.

Lists of Entities – in this category the lists contain actual named entities, such as city

names, continent names, organization names, governments, shop names, airport names, etc.

List of Entity Cues – these lists contain words that are frequently found to indicate a

certain entity type, such as “Dr.” indicating a person or “Inc.” indicating and organization.

An interesting aspect of the list pointed out by [116] is the way of using such lists. As

simple match on one or more of the elements in these lists is too restrictive, other

approaches have been used. The first approach involves stemming words (removing

prefixes and suffixes) and reducing reasonably similar characters to the standard ASCII (or

English) character set, meaning accepting letters as ă or è to a and e. Another approach is to

use distance-based metrics between strings. There are several string distance measuring

algorithms available such as the Hamming Distance, the Levenshtein Distance, Smith-

Waterman Distance, Jaro-Winkler Distance, cosine similarity or even simple Euclidian

Distance. Another interesting string distance is the SoundEx Distance which is actually a

phonetic algorithm [117] that indexes sounds as they are pronounced in English. Therefore,

based on the difference in the sound of two similarly sounding strings a distance metric can

thus be used to pick fuzzy matches in a NER list.

IV.2.2.3. Corpus Features

This category contains document-wide dependent features.

Multiple occurrences or references – If in a document a word appears both as a common

word and as a capitalized word, it is classified as common word that sometimes appears as

ambiguous due to its position at the start of a sentence, for example [118]. Another feature

in this category is entity coreference. The task of coreference resolution is a difficult task in

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 59

itself; however, having a hypothetical system that can tell whether a target entity is actually

a reference to a previously found entity would provide a large amount of information for

the target entity.

Localized syntax – possible features include Boolean values that signal whether the target

entity is in apposition with another adjacent entity, it is part of an enumeration; another

feature can be the actual position of the entity relative to the sentence /phrase or document

beginning.

Metadata – depending on the document, metadata can be extracted from the document

itself. If the document is an e-mail, then usually the From: field is a good indicator of

person names. If a document contains tables or figures, then the description below them can

provide clues about the types of entities enumerated.

Frequency Measures – the simple word frequency count is another numeric feature useful

for a NER system. The frequency can be normalized across all words and documents for

example (apply standard TF-IDF). Frequency count can also be applied to non-standard

words (multi-word tokens or very long words, for example). Such ‘special’ words will be

considered for as candidate entities for the NER system.

IV.2.3. Evaluation Metrics

Evaluation of a NER system is a rather complex issue, because there are many cases of

partial errors whose scores are debatable. Here, precision and recall have a different

meaning than when used in the WSD context. A NER system will mark an entity by

borders (thus delimiting the entity – single or multi-word – from the other adjacent words)

and also specify the type of that entity. For example, some of the errors a NER system will

output are missing to identify an entity or identifying an entity where none should be found;

assigning a wrong type to an entity; misplacing the borders – either including other extra

words or not including all the entity’s words; or any combination of the above errors.

A first evaluation method proposed by the MUC conference divides the attempt to score a

system in two categories: finding exact entities (entity boundary) and finding exact

categories for the entities. A positive score is assigned to the category choice if the category

is correctly assigned, even if the boundaries are not exact. Similarly, a positive score is

assigned if the boundary assignment is exact, regardless of the category assigned. For each

of the two distinct aspects, the following measures are proposed: the number of correct

entities (correct identification, both for boundary and category), the number of identified

entities by the system and the number of possible entities in the solution. Precision is

calculated as the number of correct entities divided by the number of number of identified

entities by the system. Recall is the number of correct entities divided by the number of

possible entities in the solution. An F-measure is proposed which is the harmonic mean of

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 60

precision and recall for both aspects (boundary and category). The harmonic mean is used

because it tends to minimize the influence of large and small values.

Another more complex evaluation method is the ACE43 evaluation. Due to the fact that the

NER task in the ACE setting involves finer-grained entity categories, coreferences, etc, it

implements measures for partial matching and partial credit for errors and so on. Here, the

initial score is 100% out of which a certain value is deducted for every mistake the system

makes. For example, the score calculated for correct identification of entity category

depends on the category type (ex: a correctly recognized person scores differently than a

correctly identified location or organization); all the entities’ aspects contribute to the 100

score. Partial score is taken for missed entities, border mismatch, category

misclassification. For each error class more subtle rules are used: for example, for border

mismatch, an allowable mismatch is if an entity’s head matches on a minimum amount of

characters. The ACE scoring method is on one hand very customizable and complete, but

on the other, due to the number of customizable parameters it is difficult to implement and

use as a common scoring method amongst NER systems not developed specifically for the

ACE task.

The last method of NER evaluation is the simple, strict match. This evaluation method is

used by CoNNL 44 to evaluate its systems. Here an entity is given points for correct

recognition only if the borders are a perfect match and the chosen category is also correct.

Precision is in this case the number of correct entities divided by the number of entities

found by the system, while recall is the number of entities found by the system divided by

the total number of entities.

IV.3. General Named Entity Recognition

In a very broad sense, both Word Sense Disambiguation and Named Entity Recognition

have the task to identify and clarify the sense of words. Whether to determine if the word

‘engine’ in “The engine is broken” refers to a mechanical engine or a locomotive (WSD),

or to determine that ‘Santa Fe’ in “I drove the new Santa Fe in Santa Fe” refers to a car and

then a city (NER), in both cases the overall aim is to determine words’ meanings. There are

differences between WSD and NER, clearly defined in the ACE, MUC, CoNNL and in

many other Natural Language Processing / Information Retrieval conferences. Because of

those particular differences, currently the problem of identifying words is split into WSD

and NER domains and almost never treated as a single entity.

Alfonseca & Mandahar try to define the WSD/NER recognition problem (and a unified

approach) in their paper [104], where they define the term “General Named Entity

43 Automatic Content Extraction, http://www.itl.nist.gov/iad/mig//tests/ace/ , with the latest edition in 2008
44 Conference on Natural Language Learning, http://ifarm.nl/signll/conll/

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 61

Recognition” (GNER) in the context of an existing knowledge source used for sense

repository. Given an ontology O having a set of concepts C (person, country, etc), a set of

instances I of those concepts (Ann, France, etc) and a hypernymy function ℎ:# ∪ "	 → #

that determines a taxonomy of instances and concepts, then the task of GNER is “the task

of identifying, for an unknown concept or instance u, the correct concept c∈C such that

h(u) = c, i.e. consisting of finding the most accurate immediate generalization of u in the

known hierarchy of concepts. “ [104].

The relation of GNER to NER (as seen by Alfonseca & Mandahar) is that NER is a

restricted task compared to GNER, having a flat hierarchy and containing relatively few

concepts whereas GNER has a taxonomy of fine-grained concepts. Regarding WSD, they

also consider it a more restricted task than GNER. In GNER the task is to find the synset

that matches the best meaning of the word, where WSD tries to find the synsets containing

that particular lexical word. GNER is seen as a “task that covers, and is harder than both

Named Entity Recognition and Word Sense Disambiguation”.

The system they propose is based on the work of Yarowksy [119] and Agirre [120] and

involves first collecting topic signatures for every WordNet concept using an unsupervised

algorithm. For every synset the algorithm generates a query containing the words in the

synset, the hyponyms as positive keywords and words in other synsets that contain the

same words as negative keywords. The query is sent to a search engine and the responses

are analyzed, counting the frequencies of the words that appear in each initial word’s

window context. After a cleaning and scoring step, the algorithm obtains a frequency count

for co-occurring words for every WordNet concept (a topic signature). Alfonseca &

Mandahar then use the topic signatures to calculate the similarity of new unknown concepts

to the existing topic signatures using a top-down approach in the concept hierarchy. For an

unknown concept u its topic signature is obtained using the same method as for the existing

WordNet concepts. Then, at each level of the taxonomy the concept whose signature is

closest to u’s is selected. If none of the selected concept’s children have a higher similarity

score then the currently selected concept is the concept that is assigned to u. The similarity

metric used is the dot product of vectors, here topic signatures.

They tested the system using a small, domain specific taxonomy and have obtained some

interesting results. However, because there is no other similar system to compare them to,

the overall system performance cannot be determined. They have discussed the problems of

topic specificity (where for example, some concepts are too general for use, like the

‘person’ or ‘location’ concepts – too many sub-concepts linking to them), the context

window size (small is apparently for this task better, because large windows introduce noise

words), and so on. The system can be used to extend or even create an ontology (at least

concerning the hypernym hierarchy).

Chapter IV - Entity recognition and word sense disambiguation for Information Extraction Page | 62

Another closer ‘unified’ view of WSD and NER is the Super-Sense Tagger (a SST). A SST,

just like NER and WSD is a Natural Language Processing task where significant entities

(nouns, verbs, etc) are annotated with super-senses [121] from a taxonomy (most often

WordNet). A super-sense is a higher level class from the taxonomy. Compared to WSD it is

an easier task as the higher level senses are more fine-grained; compared to NER is a more

difficult task as there are more super-senses than the usually very few categories a NER

system deals with.

A SST system can have many forms of implementation. For example, Ciaramita and Altun

[122] developed a system that annotates nouns and verbs with 41 WordNet super-senses.

They modeled the problem as a sequential labeling task and have implemented a

discriminatively trained Hidden Markov Model, showing better results than the baseline on

SemCor and Senseval corpora. The baseline for this task is the super-sense of the most

frequent synset for a target word. They obtained a 11% improvement on the SemCor corpus

over the 66% f-score of the baseline, and a 6% improvement over the 64% baseline for the

Senseval-3 corpus.

Chapter V - A General Entity Recognition (GER) System Page | 63

V. A General Entity Recognition (GER) System

The Web is currently the most used information source world-wide. New content is added

every day, in ever increasing amounts. However, the vast majority of this content is added

in an unstructured manner. Current search engines build increasingly larger indexes of

websites to allow access to this content. But current Information Retrieval methods are

starting to show their limits given the information amount or when subjected to very

specific user queries, and new methods to quickly obtain information are requested. The

Semantic Web promises relevant information delivered fast, and in the format the user

desires. This means that computers need to ‘understand’ to some degree the information

they store and process. The field of Information Extraction (IE) takes on the task of

extracting information from existing sources, be they unstructured (free text, books, news

articles), semi-structured (XML, structured web pages like Wikipedia) or structured sources

(databases) and then translating this information in a computer understandable structured

format that the machine can process. One basic form to store this information so that it can

be easily processed by the computer is in the form of simple entity-relation tuples (subject-

predicate-object).

As such, some of main tasks in IE are entity and relation detection and identification.

This chapter presents an approach to a sub-task of IE, namely identification and correct

assignation of predefined ontological classes to entities found in free text. We present

an unsupervised, knowledge-rich system that, given natural text as input will extract

relevant entities from it (both common and named entities) and will assign to each

extracted entity a class found in an ontology. From a certain point of view it may seem

comparable to a fine-grained, partially targeted word sense disambiguation (WSD) problem

[96], or even partially as the WSD sub-problem of word sense discrimination [123] .

The entire system is driven by the idea that entities are defined by their context. A single

entity can mean multiple things, but when put in context its meaning becomes clear.

Context in this case means some form of directional logical link from an entity to another,

as each entity specifies every other to some degree. Extending a classic example [123],

when saying “the bank in Paris”, bank defines Paris, and Paris defines bank. Individually,

“Paris” could mean the capital of France, the singer or even the historic Greek figure, and

“bank” could mean a monetary institution, a school of fish, a flight maneuver or the side of

a river. Put together, their meaning becomes clearer. Paris can no longer be a person, and

bank can no longer be a flight maneuver. Adding another entity as “accounts opened at the

bank in Paris” will then clearly specify every entity, including bank which represents a

monetary institution and not the bank of a river possibly named Paris, even without looking

at the words linking them such as verbs, prepositions, etc.

Chapter V - A General Entity Recognition (GER) System Page | 64

We rely on the fact that in order to connect entities together, this information has to already

exist in some form of knowledge repository. Ontologies match our desired repository

structure, as an ontology is at its core a type of graph that interconnects entities. In the

system presented in this chapter we will use a generic, large scale ontology that

encompasses both named and common entities – the YAGO ontology.

Before starting a formal description, to better understand the aim of the system we present

the following example showing the inputs and outputs of the system.

Example: Let us consider an input document (unstructured, natural language text). For

simplicity, let’s assume the document is composed of only one sentence:

Document: “He replaced the pipe giving his car new life - his Santa Fe now runs quieter.”

Given this document, the system will identify interesting entities (both named and

common nouns – shown underlined) and assign to each entity a suitable class from an

ontology. The system will output pairs of entities identified in the text with their

assigned entity from the ontology:

“pipe” � wordnet_exhaust_pipe_103303510

“car” � wordnet_car_102958343

“life” � wordnet_life_115140405

“Santa Fe” � Hyundai_Santa_Fe

On the left we have interesting entities extracted from the text while on the right we have

canonic entities existing in the YAGO ontology (presented in section III.1.3, YAGO also

integrates WordNet classes thus covering both common and named entities). The system

attempts in a generalized manner the task of WSD (handling common nouns, ex:

determining that the correct sense of “car” here is identified by id #102958343 out of the

other possible senses of the word “car”) and NER (handling proper nouns, ex: determining

that in this sentence “Santa Fe” represents a car, and not other similarly named entities like

the town Santa Fe in USA).

The content of this chapter is structured as follows: we start with a system overview,

referring to other partially similar systems, discussing the architecture of our proposed

system and then presenting a formalization of our stated problem. At this point it is

noticeable that the system can be divided into two major components: the Linker Algorithm

(a custom graph algorithm we named “Linker Algorithm”) and the supporting system. Even

though the algorithm is the last processing step of the system it will be presented first

because it needs to be characterized out of the context of the current system, from an

abstract mathematical point of view. We then return to the supporting system, present its

implementation and close the chapter with performance evaluation and conclusions.

Chapter V - A General Entity Recognition (GER) System Page | 65

V.1. System overview

Given free text in the form of sentences written in natural language, we aim to detect

relevant entities and then identify them to matching classes in an ontology. For example,

for the sentence “Einstein’s theories are discussed by Kaku in his latest book.” we would

like to detect that Einstein is an entity and that it refers to Albert Einstein, Kaku is also an

entity and it refers to physicist Michio Kaku, and also that the common nouns “theories”

and “book” are identified as a scientific theory or at least a general theory and a literature

book respectively.

We will attempt to do so using graph algorithms applied on an ontology which represents

our knowledge source.

One useful feature of the system is that all results are accompanied by their semantic

justification graph composed of the path between entities (including relation types and

intermediate entities). This justification graph can be used for further result evaluation,

manual or automatic, similar to [124] [125].

Our purpose could be interpreted as a fine-grained all-word disambiguation (WSD)

problem, similar to some of the tasks presented in past MUC/SensEval45 challenges. From

a certain point of view, we aim at exactly that: given a text and a knowledge source, assign

to each word a class from the knowledge source. However, there are differences: 1) for

example while we look at both named entities and common entities (closer to targeted

WSD), we do not take into account verbs or other modifiers, and focus only on nouns

(named or common). 2) we use a generic ontology that contains millions of possible entities

to choose from instead of a small, restricted set. 3) the aim of the system is for its results to

be further used in conjunction with other methods or systems (ex: relation detection,

machine learning methods) to provide, for example, full ontological facts. This is even

more relevant as we allow for unknown entities (entities from the text that have not been

assigned an entity from the ontology) to exist in valid result sets, thus allowing them to be

used in new extracted facts to gather information about previously unknown entities.

We shortly review some of the closest methods and techniques our system is related to in

the area of knowledge-based methods for WSD [123] [126].

One approach is to determine the overlap of sense definitions. Also known as the Lesk

algorithm [81], the similarity between a pair of words is calculated as the highest overlap of

words definitions. In some sense it is related to our algorithm problem: as the number of

words increases linearly, the computational problem increases exponentially having to

consider every possible sense combination for all entities. Another approach is by

selectional preferences. These are constraints on the type of words that can stand next to

45 http://www-nlpir.nist.gov/related_projects/muc , http://www.senseval.org

Chapter V - A General Entity Recognition (GER) System Page | 66

another. Word to word measures are computed using frequency count on a corpus or other

methods [127]. For other, more interesting word to class or class to class (a problem we

actually face when evaluating results), large corpora are parsed and frequency together with

words’ semantic classes provide a way to select a preferred class or word. This approach

however yields poorer results than Lesk’s algorithm [89] but is interesting for its class to

class selection feature that could be applied as a final result selector for our system.

Another category is structural approaches, divided into similarity and graph-based methods.

Similarity methods propose methods to assign a score to different words based on the

structure of the graph, for example measuring WordNet hypernym edge distances between

words (not much unlike our own scoring method) [128]. Many other metrics have been

proposed, including distance and information content based metrics. The second category

of graph-based methods exploits the structure of graphs itself. However, most of these

approaches [129] [130] focus on lexical chains (structures of semantically related words),

an approach different from ours.

Overall, knowledge-based systems usually have a somewhat poorer performance than fully

supervised machine learning algorithms. However, they do benefit from a wider coverage

due to the general, large knowledge sources they exploit [96].

Compared to Alfonseca & Mandahar’s system for General Named Entity Recognition [104]

(described in more detail in the previous chapter) the proposed system has as a common

feature that it targets both common nouns and proper nouns. On the other hand, there are

two major differences stemming from the knowledge source used and method. On one hand

Alfonseca & Mandahar’s system used WordNet to tag words while our proposed system

uses YAGO as a tag repository. The current version of YAGO (v1) we use contains about

70.000 WordNet classes from about 2 million + classes, yielding a tag space almost 30

times larger. Another difference is that the former system tags named entities with

WordNet tags (ex: Bucharest/wordnet_city) while the latter system tags named entities

with actual instances of WordNet classes (ex: Bucharest/Bucharest). The second major

difference is the way tags are assigned. While both systems are unsupervised and

knowledge-rich in their approach, the former system uses frequency counts of co-occurring

words to create WordNet topic signatures while the latter uses graph-based methods to

determine the most likely tags for groups of related words.

V.1.1. Architecture

The proposed system is structured as presented in the figure below. The diagram shows a

natural sequential flow of the component modules that operate on the input document. Step

by step the document (Input) is split into sentences then tokens; the tokens are analyzed and

merged, if necessary, into multi-word tokens (Module A). The ontology is consulted for

possible entities that could represent the words identified in the document (Module B.1).

Chapter V - A General Entity Recognition (GER) System Page | 67

The influence of the extracted entities on each other is captured into an influence matrix

(Module B.2). A graph is created based on the ontology itself and the possible entities

extracted from it (Module C.1). The entire entity group is split into smaller manageable

groups (Module C.2). A custom graph algorithm (Linker Algorithm) has been developed

that, applied to each entity group, will detect the strongest connected entities (Module C.3),

which is the final result of the system (Output).

V.2. Formalization

To understand the notations used in the rest of the chapter we will formalize the problem,

explaining its individual components.

The input of the system is a natural language, free text document (DOCUMENT),

composed of a number of sentences (SENTENCE).

�:#;<+=> = 	���������	|	�	�		
ℎ�	�
����	��		��
����		
 (29)

A. NLP Pipe

Natural language document System Input: Raw text

B. String Entity Processor

C. Canonic Entity Processor

Ontology

A.1. NLP Pipe

B.1. Canonic Entity Assignation

B.2. Influence Matrix Computation

C.1. Operational Graph Initialization

C.2. Process Group Creation

C.3. Linker Algorithm

Canonic Entities System Output: Canonic Entities

Figure 7. Logical architecture of the proposed system

Chapter V - A General Entity Recognition (GER) System Page | 68

Each sentence is in turn composed of individual tokens (TOKEN)

?+=>+=#+ = 	������	|	�	�		
ℎ�	�
����	��	
����		��	
ℎ�		��
����	
 (30)

Example: a valid DOCUMENT composed of two sentences could be “Einstein visited Ulm.

The ship sailed towards the Bering Strait.”.

The first module of the system analyzes each sentence and its tokens, and extracts a number

of String Entities (SE). The String Entities are composed of either a single token or from

multiple adjacent tokens (for example in the case of names that contain a first and a last

name).

?+=>+=#+ = 	���	|	�	�		
ℎ�	�
����	��		
����	��
�
��		��	
ℎ�		��
����	
 (31)

Example: for SENTENCE2 = “The ship sailed towards the Bering Strait.” we detect 7

tokens (individual words). After analysis we detect that token “ship” is a noun and create

String Entity SE1 = “ship”. We also detect that tokens 6 and 7 are proper nouns and can be

merged into a single String Entity, SE2 = “Bering Strait”. Thus this sentence can be

represented as SENTENCE2 = {SE1, SE2}.

We now introduce the concept of Canonic Entity (CE), in contrast to the String Entity.

While the String Entities extracted from sentences are just that, bounded sequences of

characters, entities in the ontology will be called Canonic Entities. They are clearly defined,

immutable entities linked by several relations between them that generate a certain

semantic structure.

Next, we define the concept of a Set of Canonic Entities (PCE). We assign to each String

Entity SEk a list of Canonic Entities that each could represent SEk. For example we assign to

String Entity SE1 “Einstein” Canonic Entity CE1 Albert_Einstein, but also CE2

Hermann_Einstein, his father. Both are valid possibilities for “Einstein” as a first name

is not specified. We define PCESEk the set of probable Canonic Entities CE assigned to a

String Entity SEk:

%#+()� = 	 �#+*|	1 ∈ �1,�+�� (32)

where mk is the number of Canonic Entities identified for String Entity SEk.

Example: For SE1 = “Einstein” we have PCESE1 = {CE1, CE2} = {Albert_Einstein,

Hermann_Einstein}

The purpose of the system is to assign a Canonic Entity to each String Entity identified in

the document. Up to this point we have identified String Entities, and to each String

Entity’s PCE we have added a number of possible Canonic Entities. However, String

Entities can either be related amongst themselves or not (usually String Entities in a

sentence are related amongst themselves but not to String Entities in other sentences). As it

will be shown in a later section, we have the need to split our problem into smaller tasks,

that is we do not want to process all String Entities at once, and due to the fact that we can

Chapter V - A General Entity Recognition (GER) System Page | 69

identify groups of related String Entities we will focus on processing these independent

groups separately. As each group is processed in exactly the same way, we have reduced

the problem from considering all String Entities in a document to just a group of N related

String Entities. For the remainder of the chapter, unless stated otherwise, N is the number

of String Entities we have to deal with.

= = 	 |	?+�	|	���	?+	�$	53&�'3�	'2	���	2'ℎ35	?+	��	'ℎ�$	752,�	
| (33)

Thus, given our group of N related String entities, we define a Result Set (RS):

�? = 	 �#+�0	#+� ∈ {%#+,-� ∪ ∅�	, @ ∈ �1,=�� (34)

A Result Set RS always contains exactly N Canonic Entities CEk, each one belonging either

to its probable Canonic Entity set PCESEk assigned to String Entity SEk or being unknown,

as we allow for the possibility of new, unknown entities. The system will output for each

group of String Entities not just one, but a sorted array of Result Sets RSk (from which we

will usually consider only the top scoring result).

Example: considering the previous example: “Einstein visited Ulm.” We have String Entity

SE1= “Einstein” with PCESE1 = {Albert_Einstein, Herman_Einstein} and SE2 =

“Ulm” with PCESE2 = {Ulm, Ulm_Montana}. After processing, we can have several Result

Sets:

RS1 = {Albert_Einstein, Ulm}

(because the system knows that Albert Einstein was born in Ulm, Germany)

RS2 = {Herman_Einstein, ∅∅∅∅}

(a valid Result Set comprising of Herman Einstein and ∅∅∅∅, the empty placeholder, showing

that the system did not find enough evidence to link Herman Einstein to any of the Ulm

towns in PCESE2).

RS3 = {∅∅∅∅, Ulm_Montana }

(another valid Result Set, showing that maybe there is a person named Einstein that is not

Albert nor Herman, and the town in question is actually the Ulm in Montana)

etc.

It can be seen that on the i
th

 position of any Result Set there is either an empty placeholder

or a Canonic Entity of the i
th

 String Entity, where i (1, N).

We define RSA as the array of Result Sets:

�?. = �	�?�, ?�253�
0	� ∈ �1,A��	 (35)

Chapter V - A General Entity Recognition (GER) System Page | 70

where Scorei is the score associated to RSi, a floating point value.

Example: considering the above example, the RSA would be:

RSA = { {RS1, 2.0}, {RS2, 0.8}, …, {RSQ, 0.5} }

While Result Sets do not have scores, the containing Result Set Array assigns scores to

each of its Result Sets.

Another important variable is the size of the Result Set Array (Q). The number of Result

Sets in RSA will be used in the complexity evaluation of the algorithm.

Regarding the algorithm that produces these Result Sets, we need to introduce further

notations:

We define the input graph (G) used by the algorithm. G is a weighted, undirected graph,

with the following properties: 1. every vertex represents a Canonic Entity CE that belongs

to a PCESE; 2. no links exist between the Canonic Entities belonging to the same PCE, only

direct links to Canonic Entities belonging to other of the N-1 PCEs. These properties make

G an N-partite graph.

We define the number of vertices (V), as well as the number of edges (E) in G.

8 = 	 |8(B)| and + = 	 |+(B)| (36)

where V(G) is the set of vertices in G, and E(G) is the set of edges in G.

These two integer values are also used in the algorithm’s complexity evaluation. It is worth

noting that Q will be determined in the algorithm, being a function of N, V and E.

V.3. Proposed custom graph algorithm – Linker Algorithm

As the graph algorithm represents a distinct contribution, as well as for the reason that the

algorithm can be presented independent of any system, the algorithm’s description,

implementation and results will be presented in this separate section. The evaluation of the

algorithm presented in this section will focus only on the algorithm’s performance

(runtime/memory/complexity/etc.) and not on the accuracy of the results when applied to

the General Entity Recognition System (which will be presented after this section,

integrated in the system).

The proposed algorithm is designed to solve the problem of discovering the highest

scoring sets of connected vertices within an N-partite weighted graph. An N-partite

graph is a graph that is logically divided into n partitions, having the property that there are

no edges between vertices in the same partition.

Chapter V - A General Entity Recognition (GER) System Page | 71

The algorithm was developed in the context of our proposed system, where it serves the

purpose of assigning ontological classes to entities extracted from text, given an ontology.

We abstract the ontology to a graph, the relations between classes in the ontology as

weighted edges and the classes as the graph’s vertices.

As the input of the algorithm in the context of our system is a group of N related String

Entities (SE), each of them having associated a set of probable classes from the ontology

(PCESE), we thus abstract the input of the algorithm to N sets of starting nodes. We consider

the input graph on which the algorithm will work upon as previously created, with all the

Canonic Entities from the input as included.

The output of the algorithm in the context of our system is an array of Result Sets (RS)

sorted by their descending scores. A Result Set is an N-size set of Canonic Entities (CE),

where the i
th

 CE is the chosen CE that represents the i
th

 SE from the algorithm’s input (as

presented in the formalization section V.2).

We now continue with an in-depth algorithm description, complexity analysis and

evaluation.

V.3.1. Description

This section presents the algorithm in detail. It starts with an example, then divides the

algorithm into smaller logical steps and presents them individually.

As previously stated, the algorithm aims at discovering sets of vertices, each belonging to a

different partition. The sets are created based on the scores derived from the values of the

weighted edges in the graph.

Consider the following example: Starting from the sentence “Bucharest is the capital of

Romania” we identify “Bucharest”, “capital” and “Romania” as interesting entities, and for

each we assign 3 probable Canonic Entities, as shown in figure 8. Also, we create the graph

linking them based on the ontology. Because in this section we focus on the algorithm only,

the way the graph is created and the weights on its edges are not of importance (they will be

presented in the next section V.4.).

Chapter V - A General Entity Recognition (GER) System Page | 72

As can be seen, there are no links between vertices representing Canonic Entities of the

same String Entity, the graph respecting the N-partite property, with N=3 in this particular

case.

We now abstract the actual Canonic Entities for a shorter representation, and the graph

becomes:

���	

0.9

1.1

0.45

0.05
0.05

0.05

0.45

0.05
0.05

0.05

��	
	 ���

	

����

��	
�

���
� ���

�

��	
�

����

%#+,-�

%#+,-. %#+,-�

Sport_Venues_in_Romania

are ontological entities that could represent SE2 “capital”

Bucharest

Bucharest_Ring

Botanical_Garden_of_Buchares

t
Metropolitan Areas of Romania

Romania

wordnet_state_capital
wordnet_national_capital

wordnet_capital

0.9

1.1

0.45

0.05
0.05

0.05

0.45

0.05
0.05

0.05

where:

are ontological entities that could represent SE1 “Bucharest”

are ontological entities that could represent SE3 “Romania”

Figure 9. Abstraction of the 3-partite graph in figure 8

Figure 8. Example of the graph decision problem

Chapter V - A General Entity Recognition (GER) System Page | 73

Thus, given an N-partite graph (input), find the sets of N vertices maximizing the score,

each vertex belonging to one of the partitions (output is in the form of a Result Set Array

containing multiple scored Result Sets). For example, in the figure above, we could have a

valid Result Set Array:

 �?. = 	 C�	��
1

1, ��
1

2, ��
1

3
, 2.05�, �	��
1

1, ��
2

2, ��
1

3
, 0.95�, �	��
2

1, ∅, ��
2

3
, 0.45�, …		D.

As seen, the RSA holds sorted Result Sets and their scores. Also, Result Sets that are not

‘complete’ in the sense that for the third RS in our example RSA, we have on the second CE

position a void element ∅∅∅∅, meaning that this 0.45 scoring RS is composed of CE2
1
 from

PCESE1 and CE2
3
 from PCESE3, and ANY Canonic Entity from PCESE2. Because there is no

edge between either of the selected entities to any entity from PCESE2, we cannot assume an

information link and thus any entity residing in PCESE2 (or none of them) could be a valid

choice for us. We allow this because if we find a strong link between two entities for

example, then it is much more likely that the two entities are the correct CEs for their

respective SEs than forcing a third, forth, etc entity to appear in the Result Set but with a

weaker score.

The algorithm can be divided into four distinct sequential steps, each further detailed:

Step 1. Load and initialize data

Step 2. Perform DFS for every vertex in the graph

Step 3. Compute scores for the Result Set Array

Step 4. Merge non-overlapping Result Sets (optional)

A quick overview: first, data is loaded and processed in the format needed for the

algorithm. Then, a depth-first search is performed starting from every vertex in the graph.

This will discover possible solutions that will be added to the Result Set Array. After the

graph search, scores are computed for every Result Set in the array. Next, if desired, a

merging will take place between non-overlapping Result Sets to create the best scoring

Result Sets.

V.3.1.1. Step 1 – Load and initialize data

This first step loads and converts the external data in the form needed for processing. The

input of the algorithm is actually a long array of tuples, holding links between vertices and

their weights. Also, the logical partitions are provided, in the form of an array holding sets

of vertices.

In this step the link array is parsed. Because the original data is taken from a directed larger

graph, if there is a link from CE1 to CE2, then there might be a link from CE2 to CE1 with a

Chapter V - A General Entity Recognition (GER) System Page | 74

different weight. Because the algorithm runs on undirected graphs, every reverse link is

deleted and its weight is added to the original link.

Then, the array containing all the vertices is created from the array containing the

individual sets of vertices. This array is created for efficiency, because we already have all

the vertices, just separated into sets. However this would require two operations instead of

one when iterating over the vertices. We can view this new array as V(G).

Also for algorithm efficiency, a hash map (key-value) is created for every vertex,

containing the vertex as key, and the array of its neighbors as the value.

V.3.1.2. Step 2 – Perform a custom DFS for every vertex in the N-partite graph

This is the main processing step of the algorithm.

The main idea here is to determine sets of connected components. This is done by

performing a custom depth-first search in the graph. But we need to determine all

connected components containing each individual vertex. For this we need to perform the

graph search starting from every point in the graph.

So for every vertex CEv in the V(G) array created in step 1 we launch the CDFS() function.

function CDFS(CEv) {

 push CEv to path;

 for every neighbor CEn of CEv: {

 if size(path)=1

 if edge(CEv,CEn) is already visited

 continue to next neighbor;

 if CEn visited OR CEn does not belong to a unique PCESE

 continue to next neighbor;

 else

 mark edge(CEv,CEn) as visited;

 CDFS(CEn);

 }

 if CEv has no valid neighbors AND size(path)>1

 addSolution(path);

 pop CEv from path;

}

Figure 10. Pseudocode for CDFS() function

CDFS() is a recursive depth-first search, storing the path from the initial vertex on each

recurrent call, and stopping to add a new solution only when no neighbor vertices can be

further added to the path. A new vertex can be added only if this vertex is not already

present in the path and the vertex (which is a Canonic Entity CE) belongs to a probable

Chapter V - A General Entity Recognition (GER) System Page | 75

Canonic Entity set PCESE that no other vertex on the path belongs to. This ensures that we

only add solutions that contain one Canonic Entity for every String Entity found.

Also another point of interest is the condition to continue the depth-first search only for the

links that have not yet been visited. This heuristic drastically reduces the total number of

graph searches and will be explained in the complexity analysis section.

Whenever the search encounters a valid vertex which has no further neighbors to explore,

the addSolution() function is called, with the path parameter that holds the visited vertices so

far.

The purpose of addSolution() is to add new, increasingly larger result sets (paths) to the

possible solutions pool. It does this by performing two operations: subset detection and

merging of solutions. Given a new solution path, and the already existing set of already

added solutions, it will first be determined if path is not a subset of an existing solution, and

then if path cannot be actually merged with an existing solution. This means that path can

either be added as a new solution, discarded because it is a subset of an existing solution or

merged into an existing solution.

Example: Let us consider a more complex example with four String Entities SEA, SEB, SEC,

SED, each with its associated PCESE. Let’s assume that for SEA, PCESEA is {A1, A2}, for

SEB, PCESEB is {B1, B2} and similar for SEC and SED. A result set RS will have in this case

length 4, because we have 4 String Entities. On each position, RS must necessarily have

either a null value or a vertex (Canonic Entity) belonging to that respective PCESE. For

example, a void RS can be visualized as {∅∅∅∅,∅∅∅∅,∅∅∅∅,∅∅∅∅} (where “∅∅∅∅” means null value,

interpreted as “any” Canonic Entity), a completely filled RS as {A1, B2, C1, D1} and a

partially filled RS as {A1, ∅∅∅∅, ∅∅∅∅, D2}. In our example, let’s say we determined path as {A1,

B1, C1, ∅∅∅∅}. If when iterating over the existing RSA we find that there is already a RS like

{A1, B1, C1, D1} then we drop our proposed path RS because it is a subset of the existing

one. If we find that path is not a subset of any existing RS, we search if we can merge path

to any of the existing RS instead. For example, if we find {A1, ∅∅∅∅, C1, D1}, then path can be

merged to it (because A1 and C1 are common to both, and the ∅∅∅∅ from the second position

from the existing RS can be replaced by B1 from path, and the ∅∅∅∅ from the forth position

from path can be replaced by D1 from the existing RS) and produce the merged solution

{A1, B1, C1, D1}. If path cannot be merged, it is added as a new RS to RSA.

function addSolution(path){

 RS = new empty result set;

 fill RS’s appropriate slots with CEs extracted from path

 for every RSi in result set array RSA: {

 if isSubSetOrEqual(RS,RSi)

 exit function without any changes;

 if canMerge(RS,RSi)

 RSi = mergeRS(RS, RSi);

Chapter V - A General Entity Recognition (GER) System Page | 76

 exit function;

 }

 add RS to RSA;

}

Figure 11. Pseudocode for addSolution() function

The addSolution() function will create an empty result set, populate it with entities found in

CDFS’s path, and then check every other result set in our result set pool to see if the current

result set is either a subset or an equal or if it can be merged with any of them.

Determining if a RS is a subset of another RSi (isSubSetOrEqual()):

function isSubSetOrEqual(RS, RSi){

 for j = 0 � N {

 if RS[j] ≠≠≠≠ RSi[j] AND RS[j] ≠≠≠≠ ∅∅∅∅

 return false;

 }

 return true;

}

Figure 12. Pseudocode for isSubSetOrEqual() function

The function checks iteratively all N positions of both RSs. If it finds a position of RS that is

different from RSi and that position is not ∅∅∅∅ then RS is not a subset of RSi.

Determining if RS can be merged with another RSi (canMerge()):

function canMerge(RS, RSi){

 commonElements = 0;

 for j = 0 � N {

 if RS[j] ≠≠≠≠ ∅∅∅∅ AND RSi[j] ≠≠≠≠ ∅∅∅∅

 if RS[j] = RSi[j]

 commonElements++;

 else

 return false;

 }

 if commonElements > 0

 return true;

 else

 return false;

}

Figure 13. Pseudocode for canMerge() function

This function iteratively counts the number of common elements in both RSs. If there is a

position that is not ∅∅∅∅ and the respective elements are different, then the RSs cannot be

merged. Finally, if the function cannot find at least one common element, the RSs cannot be

merged because they are actually distinct, non-overlapping.

Chapter V - A General Entity Recognition (GER) System Page | 77

Both of these seemingly minor functions are important in the algorithm as the algorithm

spends a great deal of time in them.

Overall, this step of the algorithm creates the initial RSA, but without any scores associated

to the RSs contained within.

V.3.1.3. Step 3 – Compute scores for the Result Set Array

After CDFS() was run on every vertex in the graph, we have a RSA that contains many

Result Sets, but with score zero. The score calculation is left for a later stage of the

algorithm and not included in the CDFS() because it would add too much unneeded

overhead if it would be computed on-the-fly. Also, it was not needed for Result Set

generation. The Result Sets having been obtained, this step now computes the scores for

each one of them.

function computeScores() {

 for every RS in RSA: {

 for CEi in RS (i = 1 � N): {

 if CEi = ∅∅∅∅

 continue to next CE;

 for every neighbor CEj of CEi

 if CEj ∈∈∈∈ RS AND position of CEj > position of CEi in RS

 ScoreRS += weight of edge between CEj and CEi

 }

 }

 sort(RSA);

}

Figure 14. Pseudocode for the computeScores() function

The computeScores() function iterates over all Q Result Sets RS in RSA. For each RS, it

searches iteratively each of its N positions. Each position might hold a CE or be void. If it is

not void, it searches for every neighbor of CE not already visited. If a neighbor is found, it

then adds the weight of the edge between them to the RS’s score.

After computing the scores, the Result Set Array is sorted descending by the score of each

RS.

At the end of this step we have a sorted Result Set Array filled with possible vertex choices,

each belonging to a logical partition. At this point, the first RS (or first RSs) can be used as

the solution to the current problem.

Chapter V - A General Entity Recognition (GER) System Page | 78

V.3.1.3. Step 4 – Merge non-overlapping Result Sets

This step is optional. To see the opportunity/necessity of this step, consider the following

possible RSA output by the algorithm for an N=6 logical partition problem:

�?. =

EFF
GF
FH�?� = 	 	�1,�1, �1, ∅, �1, �1	
 ?�253 ,� = 	4.0�?� = 	 	�2, �1, ∅, ∅, ∅, ∅	
 ?�253 ,� = 3.0�?. = 	 	�3, �1, �1, ∅, ∅, ∅	
 ?�253 ,� = 2.5

… …�?� = 	 	∅, ∅, ∅,�1, �2, ∅	
 ?�253 ,� = 0.6�?� = 	 	∅, ∅, �2, ∅, ∅, �2	
 ?�253 ,� = 0.6

	
IFF
JF
FK

Figure 15. Example Result Set Array

For this example it is clear that the best choice is RS1 with the highest score 4.0. However,

if we look down the list of other result sets, we can see that there are other RSs that could

be useful. As ∅∅∅∅ stands for the ANY placeholder, meaning that a ∅∅∅∅ spot can hold any vertex

in its logical partition, maybe it would be useful to combine non-overlapping Result Sets,

like RSi and RSj for example into a single RS. It is immediately apparent that the

combination of RS2, RSi and RSj would yield a higher scoring RS containing {A2, B1, C2,

D1, E2, F2} with a score of 3.0 + 0.6 + 0.6 = 4.2, higher than RS1. Another option would be

to combine RS3 with RSi yielding {A3, B1, C1, D1, E2, ∅∅∅∅} with score 2.5+0.6 = 3.1.

Even though this step will present a new Result Set Array with different RSs (larger) that

have higher scores, it does not add new information. The creation of new, larger RSs could

even be seen as confusing. Intuitively, the vertices presented in a RS are thought to be

linked each one of them (as they are in essence connected components in a graph).

However, presenting a new RS composed of two distinct, non-overlapping RSs would

create the impression that all vertices contained form a connected component, which is not

true. But in the context of our system, this step is actually required as we aim to detect most

likely CEs for every SE, meaning that a SE that is represented by a CE is better that being

represented by ANY CE in its set.

Having motivated the opportunity/necessity of the merging, we come to an interesting

problem. What combination is the highest scoring? Or in other words, how to determine the

combinations of Result Sets that lead to the best scores? This in itself is a problematic

question.

Example: Consider the following two cases, identical sets but with different scores for the

forth Result Set:

Chapter V - A General Entity Recognition (GER) System Page | 79

��� =

��
� ��� = 	 ��1,�1, ∅, ∅, ∅, ∅� 1.0

��� = 	 �∅, ∅, �1,�1, ∅, ∅� 1.0

��� = 	 �∅, ∅, ∅, ∅, �1,�1� 1.0

	��� = 	 �∅, ∅, ∅,�2, �2, ∅	� �.�
	
 !
"

Case 1

��� =

��
� ��� = 	 ��1,�1, ∅, ∅, ∅, ∅� 1.0

��� = 	 �∅, ∅, �1,�1, ∅, ∅� 1.0

��� = 	 �∅, ∅, ∅, ∅, �1,�1� 1.0

	��� = 	 �∅, ∅, ∅,�2,�2, ∅	� #.�
	
 !
"

Case 2

The best scoring set in the first case would be RS` = RS1 + RS2 + RS3 with score 3.0.

However, modifying the score of RS4 in the second case would produce a higher scoring

result RS`` of just RS1 + RS4 = 4.0. Even though RS` has all positions filled and RS`` has to

void places, RS`` scores higher and should be chosen. From this example it can also be seen

that higher-scoring Result Sets can be created from any number of non-overlapping Result

Sets.

One brute-force approach would be to consider all combinations of Result Sets. However,

that would lead to factorial complexity, a worst case complexity scenario. We propose the

following algorithm:

function mergeNonOverlappingRSA() {

 initialize new RSAfinal;

 for RSi in RSA (i = 0 � Q) {

 initialize RSARSi;

 for RSj in RSA (j = i+1 � Q) {

 if RSj and RSi are non-overlapping

 add RSj to RSARSi

 }

 createSolutionTree(RSi, RSARSi);

 RSfinal = getBestSolution(RSi);

 add RSfinal to RSAfinal;

 }

 RSA = sort(RSAfinal);

}

Figure 16. Pseudocode for mergeNonOverlappingRSA() function

The general idea is that we want to create for each Result Set in RSA a weighted tree with

all the other Result Sets that are non-overlapping, and then search the tree to determine the

highest scoring branch. This approach, while not factorial in complexity, will provide an

optimum solution for each RS.

In more detail, mergeNonOverlappingRSA() will create a new empty Result Set Array

RSAfinal. For each Result Set RSi in the original RSA it will create a new Result Set Array

RSARSi for RSi (the algorithm will thus create Q new smaller RSAs by the end). It will then

populate RSARSi with all the other Result Sets RSj in RSA that are non-overlapping with RSi.

Then, it will launch the createSolutionTree() function, presented below, that will create a tree

Chapter V - A General Entity Recognition (GER) System Page | 80

with weighted edges, and Result Sets as nodes. Then getBestSolution() function will traverse

the tree searching for the highest scoring path from the root RSi to a leaf RS, and return the

merged results as a new Result Set RSfinal. RSfinal is then added to the new RSAfinal array. The

last step is to sort RSAfinal, and replace RSA with the new, larger Result Set Array.

We now present createSolutionTree():

function createSolutionTree (RSi, RSARSi) {

 RSmerged = merged RS from root to current RSi;

 for RSj in RSARSi {

 if RSj and RSmerged non are non-overlapping

 create edge between RSi and RSj with weight ScoreRSj;

 createSolutionTree(RSj,RSARSi without RSi … RSj);

 }

}

Figure 17. Pseudocode for createSolutionTree() function

This function will recursively create a tree having as root the initial Result Set in the

mergeNonOverlappingRSA() function. It takes two parameters, the RS node and the RSA

corresponding to that node.

In the following example we use Case 1 or 2 presented above, where we abstract RS

notation for easier reading – instead of {A1, B1, ∅∅∅∅, ∅∅∅∅, ∅∅∅∅, ∅∅∅∅} we write just {A1, B1}. For

this example scores are not important, just the items in the Result Sets to see how they can

be merged.

Table 2. Example of tree creation for merging non-overlapped Result Sets

Depth RS RSA Observations Tree

1 A1B1 {C1D1, E1F1,

D2E2}

Search RSA for non-overlapping children of

A1B1

Find children: C1D1, E1F1, D2E2

For child C1D1 create link A1B1 � C1D1

Call function with (C1D1, {E1F1, D2E2})

2 C1D1 {E1F1,

D2E2}

Search RSA for non-overlapping children of

C1D1

Find children: E1F1

For child E1F1 create link C1D1 � E1F1

Call function with (E1F1, {D2E2})

A1B1

C1D1

E1F1

1.0

1.0

A1B1

C1D1

1.0

Chapter V - A General Entity Recognition (GER) System Page | 81

3 E1F1 {D2E2} Search RSA for non-overlapping children of

E1F1

Find no children and return to parent (depth 2)

Find no children and return to parent (depth 1)

For child E1F1 create link A1B1 � E1F1

Call function with (E1F1, {D2E2})

2 E1F1 {D2E2} Search RSA for non-overlapping children of

E1F1

Find no children and return to parent (depth 1)

For child D2F2 create link A1B1 � D2F2

Call function with (D2F2, {∅∅∅∅})

2 D2F2 {∅∅∅∅} Search RSA for non-overlapping children of

D2F2

Find no children and return to parent (depth 1)

Find no children and return to parent (depth 0)

Exit recursion tree

The new merged Result Sets are obtained by traversing the tree from root to leaf. For the

example above, the first merged RS is obtained by starting from A1B1, moving down

through C1D1 to E1F1, yielding RS1 = {A1, B1, C1, D1, E1, F1}. RS2 will be {A1, B1, ∅∅∅∅,

∅∅∅∅, E1, F1} and RS3 will be {A1, B1, ∅∅∅∅, D2, E2, ∅∅∅∅}.

As presented in the table, the createSolutionTree() function will create a tree containing on

each level a non-overlapping RS. It should be noted that on every step, we pass the Result

Set Array parameter to the next function call with all elements up to RSj (as in the

pseudocode above) to avoid duplication of results. This will actually halve the solution

space (tree) obtained. Having the tree constructed, the getBestSolutionFunction() will

perform a DF search in the tree and obtain the highest scoring path. In the example above,

the trees are identical for cases 1 and 2 with only the weight of edge A1B1 � D2E2 being

different. If getBestSolutionFunction() is called in case 1, it will return a RS containing {A1,

B1, C1, D1, E1, F1} with score 3.0 and in case 2 it will return a RS containing {A1, B1, ∅∅∅∅,

D2, E2, ∅∅∅∅} with score 4.0.

1.0

A1B1

C1D1 E1F1 D2E2

E1F1

1.0 1.0 / 3.0

1.0

1.0

A1B1

C1D1 E1F1 D2E2

E1F1

1.0 1.0 / 3.0

1.0

1.0

A1B1

C1D1 E1F1

E1F1

1.0

1.0

Chapter V - A General Entity Recognition (GER) System Page | 82

After every Result Set in the original RSA has been merged with the best combination of

non-overlapping Result Sets, the final operation of mergeNonOverlappingRSA() is to sort the

newly created RSA.

V.3.2. Complexity analysis

The complexity of the algorithm is determined by inspecting each component in turn.

Step 1 of the algorithm handles loading data and processing it. The first operation

performed is to transform the directed graph in an undirected graph. This is performed by

inspecting every edge and checking if there is another reverse edge. If so, the weights are

combined and the reverse edge is dropped. Considering that the graph has E` edges and will

be reduced to E edges (as defined at the beginning of this chapter), we can approximate the

number of operations to O(E
2
).

Next, a hash map is created, containing for every vertex an array of its neighbors. This is

required because we create a dictionary of edges that will make edge retrieval an constant

time O(1) operation in the next step. This requires iterating over every vertex (we have V

vertices in the graph). For each vertex we traverse the edge list containing E edges. The

entire operation implies O(VE) complexity.

The second step of the algorithm is where the actual depth first searches are performed,

starting from every vertex.

The depth-first search in itself is a O(V+E) operation [131], because we have previously

created the edge dictionary (hash map) so that neighbor retrieval is now an O(1) operation.

However, when reaching a vertex where no new nodes can be added, the addSolution()

function is called. The graph has V vertices, so the function will be called V-1 times.

The addSolution() function performs two operations in respect to its input parameter which

is a potential solution (RS). It first tries to detect whether the potential solution is a subset of

another existing solution, then whether the potential solution can be merged with another

existing solution. This implies iterating over the Result Set Array that has an increasing

number of solutions. Finally, RSA will contain Q elements, so we will consider the worst-

case scenario where we have to iterate over Q elements. Thus, addSolution() will iterate over

Q Result Sets, for each comparing position by position (N positions corresponding to the N

partitions of the graph) whether the candidate RS is a subset of exiting RSs. Both

isSubSetOrEqual() and canMerge() are O(N) functions. This implies that addSolution() will

have a complexity equal to O(N+Q(N+N)) = O(2QN+N).

Therefore the total complexity of a CDFS() call will be O(V+E*(2QN+N)) = O(2QNE + NE

+V). Considering that in worst case scenario we will have V CDFS() calls, then the total

complexity of step 2 will be O(2QNEV+NEV+V
2
).

Chapter V - A General Entity Recognition (GER) System Page | 83

Step 3 handles computing scores for the Result Sets obtained in step 2. This requires

iterating over the Q Result Sets. For each Result Set, for each position (from a total of N

positions, as RS is a N-length array), a list of neighbors is obtained (using the edge

dictionary in O(1) time). This list of neighbors is then iterated over. However, considering

the worst case scenario, where we have a complete k-partite graph, we need to iterate close

to V neighbors. This implies that computeScores() will have a complexity of O(QNV) so far.

Next, we need to sort the Result Set Array. For this reason we use a merge sort algorithm

because it is a stable sorting algorithm as the average and worst time complexity are both

O(QlogQ) in our interpretation (as opposed to Quick Sort for example46 which has a worst

time complexity of O(Q
2
) when the list is sorted, even though in average is also a

O(QlogQ) algorithm).

After sorting, computeScores() will have total complexity of O(QNV + QlogQ).

In step 4 we create a tree of possible Result Set combinations. We have Q Result Sets to

look at. We will analyze the worst case scenario where we have Q Result Sets that all are

non-overlapping between them.

Example: Consider we have Q = 5 Result Sets, noted as A, B, C, D and E (assuming for

simplicity that A = {A, ∅∅∅∅, ∅∅∅∅, ∅∅∅∅, ∅∅∅∅}, B = { ∅∅∅∅, B, ∅∅∅∅, ∅∅∅∅, ∅∅∅∅}, etc.). We have N = 5 Result Set

length (also for simplicity we will allow Result Sets having only one Canonic Entity). To

create merged sets we can have any combination of A .. E. A valid RS would be A ∪∪∪∪ B, C ∪∪∪∪

D ∪∪∪∪ E or even A ∪∪∪∪ B ∪∪∪∪ C ∪∪∪∪ D ∪∪∪∪ E. The created tree would look like this:

The createSolutionTree() function complexity can be calculated as follows, considering that

in any step, in worst case scenario, a node will have Q-d children (d = depth in tree), and

46 http://en.wikipedia.org/wiki/Randomized_algorithm

B

C

A

C D E

D E D E E

D E

E

E E

Figure 18. Worst case scenario tree construction for step 4 merging function

Chapter V - A General Entity Recognition (GER) System Page | 84

will visit them each sequentially, with a Q-d-ith_child children array. We can write this

function as follows:

>��� = = +)= + >�� − 1�*+)= + >�� − 2�*+. . +)= + >�1�* >��� = �= + >�� − 1� + >�� − 2�+. . +>�1� (37)

where the initial N is for obtaining RSmerged, and each parenthesis is a “for” iteration

containing an O(N) for checking if RSj and RSmerged are non-overlapping and then calling

the recursive function again with a sequentially decreasing RSA. T(1) = O(1) = 1.

Simplifying notation yields:

>��� = �= + � >(�)���

���

 (38)

Isolating T(n-1) and expanding recursively:

>��� = �= + �>�� − 1��+ � >��� =���

���

= �= + L(� − 1)= + � >������

���

M+ � >��� =	���

���

(� + � − 1)= + 2� >������

���

…

>��� = �� + � − 1 + � − 2+. . +1�= + 2���>�1� = 	= ���

���

+ 2���>(1)
(39)

Considering that n can be at most Q, and T(1) = 1, ignoring constants and approximating,

T(n) becomes:

>��� = =�(� + 1)

2
+ 2��� 	≅ =A� + 2/�� (40)

The dominant term is 2
Q-1

 and is half of the sum of all k-combinations of Q elements

(which is 2
Q
) considering all other operations are O(1), which is we would need to do to

check all possible combinations of Result Sets by brute force.

As a side node, even though worst case complexity is almost as bad as having to generate

all possible k combinations of Q elements, in average, in our problem setting, this is a non-

issue because rarely we have more than one or two possible Result Sets to combine with –

meaning we create a tree of depth 1 or 2 with only a couple of branches – bringing the

average complexity down into almost constant time O(kN) (because having only one or two

Chapter V - A General Entity Recognition (GER) System Page | 85

children implies 1 or 2 calls to the function that needs to check for non-overlapping which

takes O(N) for each child).

The getBestSolution() function has complexity O(V’+E’) as it is a depth-first search.

However, in the worst case scenario the tree has 2
Q-1

 vertices with 2
Q-1

-1 edges. This means

the complexity of this function is O(2
Q
).

The total complexity of mergeNonOverlappingRSA() is thus: O(Q*(NQ + NQ
2
+2

Q-1
 + 2

Q-

1
)+QlogQ) = O(NQ

2
+ NQ

3
+ 2

Q
Q + QlogQ). The total complexity obtained is the largest of

any step. However, in real life scenarios this function is executed quickly, the largest

influence having the Q
3
 term.

Observation: We have generally sacrificed storage space for speed. Considering that in

general we work with relatively small number of edges, vertices and Result Sets that in

current computers occupy only a fraction of the total available amount of RAM, the choice

for speed over storage is obvious. This is why, for example, in step 1 we create an edge

dictionary even though we already have the graph links stored as a simple array, or in step 3

we use merge sort instead of quick sort.

We now calculate the total complexity of our algorithm:

Step 1: O(E
2
 + VE)

Step 2: O(2QNEV + NEV + V
2
)

Step 3: O(QNV + QlogQ)

Step 4(optional): O(NQ
2

+ NQ
3

+ 2
Q
Q + QlogQ)

The total complexity of the algorithm will thus be the sum of each individual step, as each

step is executed sequentially.

The experiments that follow show that core processing time (step 2 + 3) is very fast

(especially for real-life graphs applied to our problem setting), on the order of less than

500ms per graph. It can be seen that in the forth optional step there is an exponential term

in the complexity: 2
Q
 which takes the problem from the polynomial to the exponential

complexity domain. However, as Q is a variable dependent on N, E and V (basically

depends on the graph density – in our case defined as the ratio of E over V as we can have

several edges between any two vertices), it will be shown that in real life scenarios Q will

be small, and the 2
Q
 term will play a less significant role than other polynomial terms. The

following “Experiments” section will further elaborate on the complexity and performance

of the proposed graph algorithm.

Chapter V - A General Entity Recognition (GER) System Page | 86

V.3.3. Experiments

To evaluate the performance of the algorithm we will focus on runtime of diverse types of

graphs, varying the input parameters N, E and V, which will directly influence Q.

The evaluation will follow two types of graphs: random generated graphs that show how

performance and parameters vary, and real-life graphs extracted from actual texts, to see the

algorithm’s actual performance in practice.

The algorithm (as the entire system) was built in Java 1.6 64bit. It was implemented as a

single threaded application, even though all steps can be easily parallelized. Steps 1, 3 and

4 can be directly parallelized as they process data that is not dependent on other data. Step 2

can also be parallelized by synchronizing thread access for I/O on the Result Set Array. The

algorithm was not parallelized because analysis is easier and more relevant when not

considering threads as a parameter.

The experiments were conducted on a normal PC, powered by a single-core Pentium 4

processor (Cedar Mill, with Hyper Threading disabled) at 2.8 GHz. A low-end machine

was chosen specifically for the algorithm not to take advantage of operating system or java

compiler automatic pseudo-parallelization that happens when running single-threaded

applications on multi-core processors.

V.3.3.1. Evaluation on random-generated complete graphs

The first type of evaluation the algorithm will be subjected to is a worst-case scenario

complete graph. A complete graph is a graph in which every vertex is connected to every

other vertex (in our case excluding connections between partition vertices to maintain k-

partite property). We generate the graph with an equal number of vertices in each of its N

partitions. Similarly, an equal number of edges will link the vertices of any two partitions.

We use the term ‘complete’ graph somewhat abusive, because we refer to the graph as

complete in the sense that every partition is linked to every other partition, even though

individual vertices from a partition could have any number of links to vertices of another

partition (including zero links meaning isolated vertices). We will thus use the term

‘complete’ graph in this section keeping in mind the note above.

We implemented a random graph generator. This generator varies the V and E parameters

and benchmarks the algorithm for every variation. We generate complete graphs by first

generating N times V/N vertices representing the N partitions. This generates an equal

amount of vertices for each partition. Then we iteratively generate between every two

partitions a number of 2*E/(N*(N-1)) links between elements of the two partitions. Because

Chapter V - A General Entity Recognition (GER) System

a complete graph has V*(V-1)/2 links, in total we obtain a number of

links, but evenly distributed between partitions.

For our tests, we fixed N = 5, as it is the average number of partitions we estimate the

algorithm will handle; the number

accordingly. More important parameters are the total number of

number of edges E in the graph.

(meaning one vertex per partition)

We first observe the number of Result Sets obtained varying

Figure 19

The surface above immediately shows two things: 1. the algorithm has an

exponential tendency for a large number of edges and a small number of

the vast majority of our test cases, the Result Set

constant.

It can be seen that Q depends greatly on the

is, the higher the number of Result Sets generated. This happens because if in a graph

where there are several edges between any two vertices the algo

combinations of edge paths in the graph between vertices, yielding several Result Sets

having the same vertices but with different scores. In the figure above we can see that the

highest number of Result Sets is found for graphs wit

interconnected by the largest number of edges.

algorithm to finish steps 2 and 3 (step 1 is performed <5ms each time, and thus irrelevant,

and step 4 is optional and mimics step

0

50000

100000

150000

200000

250000

300000

350000

5 50 100

N
u

m
b

er
 o

f
R

es
u

lt
 S

et
s

(Q
)

A General Entity Recognition (GER) System

1)/2 links, in total we obtain a number of E randomly generated

links, but evenly distributed between partitions.

= 5, as it is the average number of partitions we estimate the

algorithm will handle; the number N itself is not very relevant as the results will scale

accordingly. More important parameters are the total number of vertices

number of edges E in the graph. We vary E from 100 edges to 1000, and

(meaning one vertex per partition) to 500 (meaning 100 vertices per partition)

We first observe the number of Result Sets obtained varying E and V as specified.

19. Result Set size variation on complete graph

The surface above immediately shows two things: 1. the algorithm has an

exponential tendency for a large number of edges and a small number of vertices

the vast majority of our test cases, the Result Set Q number remains fairly small and

depends greatly on the ratio of edges to vertices. The higher this ratio

is, the higher the number of Result Sets generated. This happens because if in a graph

where there are several edges between any two vertices the algorithm will evaluate all

combinations of edge paths in the graph between vertices, yielding several Result Sets

having the same vertices but with different scores. In the figure above we can see that the

highest number of Result Sets is found for graphs with the fewest number of vertices

interconnected by the largest number of edges. We now look at the time required for the

algorithm to finish steps 2 and 3 (step 1 is performed <5ms each time, and thus irrelevant,

and step 4 is optional and mimics step 2 in trend so it is omitted).

100 150 200 250 300 350 400 450 500Number vertices (V)

Page | 87

randomly generated

= 5, as it is the average number of partitions we estimate the

very relevant as the results will scale

vertices V and the total

and V from 5 vertices

per partition).

as specified.

The surface above immediately shows two things: 1. the algorithm has an almost

vertices, and 2. for

number remains fairly small and

ratio of edges to vertices. The higher this ratio

is, the higher the number of Result Sets generated. This happens because if in a graph

rithm will evaluate all

combinations of edge paths in the graph between vertices, yielding several Result Sets

having the same vertices but with different scores. In the figure above we can see that the

h the fewest number of vertices

We now look at the time required for the

algorithm to finish steps 2 and 3 (step 1 is performed <5ms each time, and thus irrelevant,

100

300

500

700

900

500

N
u

m
b

er
 o

f
ed

g
es

 (
E

)

Chapter V - A General Entity Recognition (GER) System

Figure 20. Algorithm

Figure 21. Algorithm

We see the same evolution for both steps 2 and 3 as

a first indication that the size of the Result Set Array

deciding run time. Also, based on the variation of

on the structure of the graph. As the graph is denser, with fewer

interconnections, Q is growing very fast.

implies that Q is the deciding factor in algorithm co

see that the average running time for most of the test cases is just a few milliseconds.

0

500

1000

1500

2000

2500

3000

3500

5 50 100

T
im

e
re

q
u

ir
ed

 f
o

r
st

ep
 2

 o
f

a
lg

o
ri

th
m

(m
s)

0

200

400

600

800

1000

1200

5 50 100

T
im

e
re

q
u

ir
ed

 f
o

r
st

ep
 3

 o
f

a
lg

o
ri

th
m

(m
s)

A General Entity Recognition (GER) System

. Algorithm step 2 time variation for complete graph

. Algorithm step 3 time variation for complete graph

We see the same evolution for both steps 2 and 3 as in the Result Set number

a first indication that the size of the Result Set Array Q is the most important factor

deciding run time. Also, based on the variation of E and V, Q is obviously varying greatly

on the structure of the graph. As the graph is denser, with fewer vertices

is growing very fast. The strong correlation between run

is the deciding factor in algorithm complexity, more than E

see that the average running time for most of the test cases is just a few milliseconds.

150 200 250 300 350 400 450 500Number of vertices (V)

150 200 250 300 350 400 450 500Number of vertices (V)

Page | 88

number figure. This is

is the most important factor

is obviously varying greatly

vertices but more

The strong correlation between run-time with Q

E or V. Overall, we

see that the average running time for most of the test cases is just a few milliseconds.

100

300

500

700

900

500

N
u

m
b

er
 o

f
ed

g
es

 (
E

)

100

300

500

700

900

500

N
u

m
b

er
 o

f
ed

g
es

 (
E

)

Chapter V - A General Entity Recognition (GER) System Page | 89

We now look into more detail to the algorithm time performance and the size of the Result

Set Array for a fixed number of V = 50 vertices for 5 partitions, with the number of edges

varying from 50 to 1000.

Figure 22. Time measurement when varying the number of edges

Figure 23. Result Set Array size when varying the number of edges

Considering the complexity of steps 2 and 3 (Step 2: O(2QNEV + NEV + V
2
) and Step 3:

O(QNV + QlogQ)) we see that the most important variable appears to be Q, as it tends to

grow exponentially in certain cases, even though E and V increase linearly. Q is basically a

function of three parameters: E, V, and the graph’s structure, and is determined in step 2 of

the algorithm. However, both steps vary linearly depending on Q, so we can conclude the

algorithm has an almost linear complexity in average cases (we based this on the worst case

scenario involving the largest solutions possible. This was due to the fact that the custom

depth first search has to discover every possible maximal length solution due to the nature

of the graph).

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000

T
im

e
(m

s)

Number of edges E in graph for V = 50 and N = 5

Step 2 Time Step 3 Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 200 400 600 800 1000

N
u

m
b

er
 o

f
R

es
u

lt
 S

et
s

Q

Number of edges E in graph for V = 50 and N = 5

Chapter V - A General Entity Recognition (GER) System Page | 90

V.3.3.2. Evaluation in a real world scenario

The evaluation of the algorithm is better performed in the scenario it was designed for,

which means a varying number of vertices, edges and uneven partitions and links between

partitions. All of these parameters are determined by the characteristics of the text the

algorithm is applied on – in this section the graphs are generated from a collection of text

documents using the General Entity Recognition system itself to extract and process the

String Entities. The algorithm is given a graph in the form of links between vertices and the

logical partitions of these vertices. The vertices themselves represent entities extracted from

the ontology, and the edges between them are the paths in the ontology between these

entities.

As such, to determine the graph that the algorithm will be run upon we first need to

determine the entities and links in the ontology which in turn are found by analyzing the

words that make up the sentences in documents. We need to determine the N, E and V

parameters, as well as the structure of the graph represented by the edges between vertices.

The N parameter is the number of String Entities that are related. Usually, N is the number

of nouns in a sentence, because we target only nouns (common and proper) and usually we

consider all nouns as related in simple sentences.

Next, the number of vertices V is determined by the number of Canonic Entities found in

the ontology for every String Entity. The number of vertices is thus strongly linked to the

method of discovering possible matches in the ontology and to the ontology itself (larger

ontologies will hold more probable entities that could mean the same thing). The method of

Canonic Entity assignation to a String Entity is explained in the section describing the

General Entity Recognition system itself.

The number of edges E, and the structure of the graph itself is also directly linked to the

ontology, as an edge between two vertices in our graph is actually a path (either direct or

composed of other intermediate entities) between the two entities in the ontology. The

method of generating the graph starting from the ontology will also be explained in the

GER system section.

We are interested in real life evaluations of these parameters to be able to run the algorithm

and analyze its performance. Keeping in mind that we intend for our system to be used in

the context of Information Extraction from the Internet, we try to evaluate the parameters

by analyzing three sources of information: Wikipedia pages, news articles and blogs.

For this evaluation we will use 50 Wikipedia pages, 50 news articles and 50 blog entries.

While the average words per Wikipedia article is 59047 we chose articles that had at least

47 http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

Chapter V - A General Entity Recognition (GER) System Page | 91

5000 words, as we wanted to create a category of longer documents. The length of the news

articles and blog entries is usually around 400-800 words.

For Wikipedia pages a wiki parser48 was used to parse some of the more popular and longer

articles online. The extracted HTML tree was cleaned and a text-only version of the pages

was obtained.

For the news articles we have used BBC49 as a news source, but filtered the pages as text-

only versions by another online site50. 50 news items were extracted and placed in simple

.txt files. For the blog entries we used the random function on blogspot.com to extract 50

names of English language blogs. For the text-only translation viewtext.org was given as

parameter the newest post in every blog. The obtained HTML was parsed and only the text

section (excluding title, etc) was kept and stored in .txt files, in the same format as above.

Next, we ran the entire system on each of the documents sequentially. For each document,

it was first split into sentences, sentences into tokens, tokens were merged where necessary

to create String Entities, to which Probable Canonic Entity sets were added. Then, the

intermediary ontology was created and paths between related entities were identified. The

set of edges links and the Canonic Entities themselves were given to the algorithm for

processing.

We ran the algorithm for each of the three categories of items. We present the algorithm’s

results in the table below showing the average number of String Entities found that are

related and implicitly processed together and associated parameters:

Table 3. Algorithm input parameters average grouped by document category

Property Wikipedia Blogs News All Combined

Number of sentences per document 268.7 29.6 31.2 109.85

N average (average # of related String Entities) 6.7 5.7 6.9 6.4

Named SE average per partition (proper nouns) 2.5 2.0 2.2 2.2

Common SE average per partition (com. nouns) 4.2 3.7 4.7 4.2

Distribution of Named vs. Common SE per part. 37%/63% 35%/65% 32%/68% 34%/66%

Average # Canonic Entities per document 107121 7896 12017 42375

Average Canonic Entities per Named SE 119.9 87.1 113.4 106.8

Average Canonic Entities per Common SE 18.4 14.2 15.0 15.9

From the experimental results obtained we can draw some conclusions:

• The average number of sentences per document illustrates the average size of

documents chosen. While the news from BBC and blog posts are rather short,

48 http://sweble.org/wiki/Sweble_Wikitext_Parser
49 www.bbc.com
50 Example: http://neilbryson.net/newsfeed/single.php?url=/go/rss/int/news/-/news/world-africa-13371638

Chapter V - A General Entity Recognition (GER) System Page | 92

visited Wikipedia pagers are longer, reaching an average of 268 sentences per

document.

• The N average is the average number of related String Entities. News documents

have the highest average of 6.9 SEs per partition. Out of these total average numbers

of SEs we have also calculated the number of String Entities representing common

words or named entities. It can be seen that most named entities are found in

Wikipedia articles (37% out of all String Entities are named entities). However, the

distribution is rather similar for every category. This is an important parameter, as it

shows that most of the vertices in the graph are common words, together with the

observation that links in the graph between common words are links of type

subClassOf which are of lower importance. In our problem setting, the existence of

named entities is essential as named entities are strongly interconnected compared

to the common entities that usually have only a single subClassOf link to a single

other entity, up one level in the WordNet hypernym tree. Also this parameter is

important for the algorithm itself, as graphs with many named entities will have a

much higher number of edges and vertices, and thus more Result Sets and longer

processing times.

• The average number of Canonic Entities per document is a statistical parameter to

show approximately the number of CEs identified and passed to the algorithm per

document. The bigger the documents, the more Canonic Entities are identified in the

ontology.

• The last two values are the average number of Canonic Entities identified for each

named or common String Entity. It can be seen that Wikipedia articles (with news

articles close behind) have String Entities that are more ‘popular’, meaning YAGO

knows more probable classes per String Entity than for blog articles, both for named

and common entities. This reflects the fact that blogs have words that are less

common, and thus less probabilistically to exist in the ontology, just as expected.

Another interesting parameter is partition distribution. If we analyze the number of Canonic

Entities per each String Entity (named and common combined), we observe the following

distribution:

Chapter V - A General Entity Recognition (GER) System Page | 93

The figure above shows that most String Entities (almost 80%) have less than 25 Canonic

Entities associated. This means the algorithm will most usually run with partitions that have

less than 25 vertices. Interestingly, we see a surprising number of String Entities that have

no Canonic Entity associated. This means that during the Canonic Entity association phase

(later described in the General Entity Recognition system section) we have found no

suitable candidate. As seen, many partitions will thus have no vertices whatsoever. On the

other end of the chart, we see that there are partitions that have more than 1000 vertices.

These String Entities are always proper nouns representing persons, locations, etc. For

example, searching the ontology for candidates for String Entity “United States” can match

3171 possible Canonic Entities (it matches many more as a substring, but only 3171 remain

after the cleaning step – explained later in the GER system section), while searching for

common String Entities like “book” yield a much lower 44 possible Canonic Entities for

example (including the 6 senses of the word “book” itself available in WordNet, along with

other possible classes like cook_book or picture_book).

In the following table we present the results obtained for the three categories analyzed. We

have the N, E, V and Q average for each individual category. Also we have recorded the

algorithm processing time for each step individually for every group of String Entities.

Each step is then averaged by summing the time and dividing it to the number of groups.

Table 4. Algorithm average run-time grouped by document category

Property Wikipedia Blogs News All Combined

N average 6.7 5.7 6.9 6.4

E average 585.6 345.9 680.3 537.2

V average 114.7 91.3 134.4 113.4

Q average 7505 458 6871 4945

Step 1 (ms) 950 139 241 433

0

5

10

15

20

25

30

35

40

0 1-10 11-25 26-50 51-100 101-500 501-1000 >1000

P
er

ce
n

t

Number of Canonic Entities per String Entity

Blogs

News

Wikipedia

All Combined

Chapter V - A General Entity Recognition (GER) System Page | 94

Step 2 (ms) 5412 107 1192 2237

Step 3 (ms) 916 6 220 380

Step 4 (ms) 14410 177 3733 6107

Step 2 + 3 (ms) 6328 114 1412 2618

Step 1 + 2 + 3 + 4 (ms) 21688 291 5145 9041

The table shows some interesting results. For example, while the Wikipedia documents

have in average slightly smaller graphs than news items, the number of Result Sets Q is

larger, and also the processing time is significantly higher. This shows that the graph

structure is more complex for Wikipedia documents. Blogs on the other hand have lower

numbers of vertices per graph as well as almost half the number of edges, thus making the

average computational time (step 2+3) very small, 114ms.

About the runtime, the Wikipedia documents have came up with some very long and

difficult sentences, that have taken in some cases around 1-2 minutes and also very few

sentences that were so complex (so many related named String Entities with many vertices

in each partition) that processing time exceeded 5 minutes. Clearly such extreme running

times for just a set of entities make the system unusable even in offline processing.

However graph complexity is independent of the algorithm that will be run upon it and

depends directly on the previous computation. Thus, we include all times in the average

document run-time. Because of these border cases with very high complexity the average

for Wikipedia for step 2 for example is almost 5 times bigger than for the news. However,

for the vast majority of cases run-time is around 50-300 ms, faster than the time it takes to

parse the sentence (which is around 500ms for the Stanford Parser).

The results show an algorithm adapted for the particular scenario of k-partite graphs that

exhibits good performance given the exponential nature of the problem.

V.4. Integrating the Linker Algorithm into the General Entity

Recognition System

In the previous chapter we have investigated the proposed Linker graph algorithm as out-

of-context as possible, as it can be abstracted and presented as a stand-alone algorithm for

solving a particular graph problem. This chapter will present the entire General Entity

Recognition (GER) system with which the algorithm is integrated with.

As seen in the system architecture diagram presented at the beginning of this chapter, the

Linker Algorithm is actually the last sub-module in the process-flow of the system. Each

Chapter V - A General Entity Recognition (GER) System Page | 95

module with its sub-modules will be presented in order, showing the required steps and

proposed methods to obtain a set of Canonic Entities starting from a text document.

V.4.1. Module A - NLP Module

This first module handles document preparation for processing. It is basically a full NLP

pipe. The NLP pipe is the standard treatment applied to texts, meaning sentence detection,

tokenization, noun transformation from plural to singular form, Part-Of-Speech tagging,

parsing, Named Entity recognition. For most of these tasks we use Stanford CoreNLP

package51.

Initially, the document is split into sentences. This is done by Stanford’s SentenceAnnotator

(the splitter uses a Maximum Entropy model to detect sentence boundaries). This ensures

with rather high accuracy that sentences like “The book is written by J.R.R. Tolkein.” are

correctly identified and not split whenever encountering a comma or other punctuation.

Each sentence is then split into tokens by Stanford’s tokenizer. Next each token is further

processed. Each token contains the original string, its singular form (for nouns), its Part of

Speech, word type (whether it is a common word, a proper noun or punctuation mark),

named entity type (if it is a proper noun, then what kind of proper noun it is).

The original string is the token itself. The singular form of common nouns is obtained using

the Inflector class52 (Java implementation) of JBoss53 Community DNA open middleware.

This is a required step as entities in the ontology are all in the singular form. The Part-Of-

Speech tag is obtained from Stanford’s POS Tagger [132] (a Maximum Entropy model).

The detection of common words is done using a free English dictionary, with added

heuristics (such as ignore capitalized words and words that start the sentence – they are

always capitalized and the dictionary is not a sufficiently accurate measure for these cases).

Punctuation marks tokens are detected using regular expressions.

If a word is not a common word (words not found in the noun dictionary, capitalized words

that start the sentence, words which are recognized as having a NNP POS (Nominal Noun

Proper)) then it might be a named entity. A named entity type can either be a person, a

location, an organization or other. We have taken these 4 major categories because they are

the standard used for named entity recognizers including Stanford’s Named Entity

Recognizer [109]. This NER uses a Conditional Random Field implementation to detect

whether a proper noun could be one of the four broad categories above. It is useful for the

system in a later phase as it allows the cutting down of unlikely Canonic Entities for each

String Entity.

51 http://nlp.stanford.edu/software/corenlp.shtml
52 http://docs.jboss.org/modeshape/0.4/apidocs/org/jboss/dna/common/text/Inflector.html
53 http://www.jboss.org/

Chapter V - A General Entity Recognition (GER) System Page | 96

After token processing, the sentence is parsed using Stanford’s Parser [133], storing the

syntactic tree and the dependency tree.

The final step of this module is to reiterate over the tokens sequentially and extract String

Entities. String Entities are basically noun tokens with added properties. A String Entity can

be composed of a single token (ex: “government”) or span several (“ex: “John E. Smith”) in

cases of proper nouns. Also, each String Entity inherits the entity type and named entity

type properties from its tokens. So, a String Entity might be a common word, punctuation

(this category is ignored in this stage and further), a unit of measure or a named entity. In

case it is a named entity, it could be a person, a location, an organization or another type

designated by ‘unknown’.

As a summary, this module receives a document and outputs extracted String Entities.

Example: let us consider the sentence “Alan Mulally has just announced the new Focus

with a 1.6 liter engine”. String Entities are made of single or multiple neighboring tokens.

From the example sentence, we identify nouns (proper or common) and other interesting

words as: Allan, Mulally, Focus, 1.6, liter, engine. After identification we join named

entities together if they could represent a full name. This is done with the help of Stanford’s

NER and heuristically when finding proper nouns that have not been marked by the NER

(automatically setting the named entity type to ‘unknown’). If neighboring named entity

tokens are in the same sequence (as marked by the NER) then we merge tokens together to

create a single String Entity. Otherwise we let each token be an individual String Entity. If

units of measure are detected (based on a dictionary) they are always linked together with

their values. As such, we obtain String Entities: “Allan Mulally”, “Focus”, “1.6 liter” and

“engine”.

V.4.2. Module B - String Entity Processor Module

This second module takes as input the processed sentences from the NLP pipe. It performs

two relatively distinct operations on it. First, to each String Entity it retrieves a set of

appropriate Canonic Entities from the ontology. Second, it computes an influence matrix

that measures the influence of each String Entity on every other based on each sentence’s

dependency tree.

V.4.2.1. Canonic Entity Assignation

Each sentence comes out of the NLP pipe with a set of identified String Entities. For each

of these entities we must assign a set of possible Canonic Entities that the String Entity

might represent. We obtain these Canonic Entities from the ontology we use. Using

YAGO’s means relation we can link strings to ontology classes (Canonic Entities).

Chapter V - A General Entity Recognition (GER) System Page | 97

For example, for String Entity “engine” we ask YAGO to give us all the entities that

contain the substring “engine”. In this particular case, YAGO return for this initial phase

2259 facts, in the form:

Table 5. Example of classes YAGO returns for the query about “engine”

Subject (string) Relation Object (YAGO class)

"Alfa Romeo Flat-4 engine" means Alfa_Romeo_Flat-4_engine

"automobile engine" means wordnet_automobile_engine_102761557

"diesel engine" means wordnet_diesel_103193107

"engine" means wordnet_engine_103287733

"engine" means wordnet_engine_103288003

"engine" means wordnet_engine_111417561

"engine" means wordnet_locomotive_103684823

We search for substrings and not exact strings because each ontology class has at least one

means relation, meaning that there are more ways to define a single entity. For example,

Canonic Entity United_States is referenced by “U.S”, “Stati Uniti d'America“ or

“American Civilization“ (to name a few) through the means relation. Also the reverse holds

true, meaning that we can define with the same word more YAGO classes. As illustrated in

the table above, the word “engine” can mean either a motor engine or a locomotive with

equal probability. Searching for substrings means we do not miss any probable Canonic

Entity.

Having obtained for each String Entity a set of probable Canonic Entities, we now perform

a cleaning step for each String Entity. The first thing the cleaner does is that for each

Canonic Entity a String Entity has associated, it ensures that all the individual words of the

String Entity are found in the Canonic Entity’s name. For example, for String Entity “New

York” Canonic Entity York is removed as a probable entity because it does not contain

“New” in its name. This strategy removes a large number of false positive entities but also

could sometimes remove a few true positives.

Then, depending whether a String Entity is a common or named entity, it cleans

WordNet/non-WordNet Canonic Entities appropriately. As presented in the previous

section describing YAGO, the ontology has an almost tree-like topology, with the WordNet

hypernym hierarchy on top, then wikicategory classes and then other entities linking to

them. This means that common words (nouns for example) can only mean WordNet

classes, and named entities only lower level, non-WordNet classes. For the above example,

we drop Canonic Entity Alfa_Romeo_Flat-4_engine because it is an individual and not

a generic entity. The reverse is done for named entities, where all matching WordNet

entities are dropped. In YAGO, entities starting with “wordnet_” and followed by an id

are high-level entities (ex: wordnet_engine_103287733).

Chapter V - A General Entity Recognition (GER) System Page | 98

The cleaning step allows for more heuristics to be applied. For example, a good heuristic

we apply to reduce the number of possible Canonic Entities per String Entity is to not allow

named entities to contain years or other numbers enclosed in parentheses in their names (for

example we discard directly all the individual highways identified by numbers, ex:

Interstate_I50); another heuristic is to not allow too long Canonic Entities names: if

the number of words in the Canonic Entity’s name is three times more that the number of

words in the String Entity then we discard it (this is done because of the way YAGO was

created from Wikipedia, which tends to have many long names); another good heuristic we

observed is to remove wikicategory entities altogether, because they are generic

concentrators, are neither suited for common nouns or for named entities.

The final cleaning step is applied only to String Entities that are named entities (proper

nouns) and is basically a collection of heuristic cleaning rules. A first heuristic is to look for

commas in its entity name to identify if it could be a location. For example, for String

Entity “California”, using the means relation in the ontology we find

Farmersville,_California. Because the word “California” is after the comma, we

drop the Canonic Entity because it is a location in California and not an entity that could

represent California itself. However, for String Entity “Farmersville”, Canonic Entity

Farmersville,_California is a valid candidate (“Farmersville” is before the comma).

In YAGO locations can be identified by the comma separating the city/town/village to its

region/state/country.

Another heuristic in this final step is that by using the information provided by the NER in

module A we have a general idea whether the String Entity is a Person, a Location, an

Organization or in the Other category. This fact alone helps to reduce the number of

possible Canonic Entities greatly, and most importantly by removing entire types of CEs it

prevents the detection of many false-positive Result Sets. To understand how this named

entity category cleaning happens, it is useful to know that any entity in the ontology has at

least one type relation (the type relation in YAGO is basically the generic Is-A relation),

specifying what type of entity it is. For example, for String Entity “Paris” YAGO returns,

among others, CEs Paris and Paris_Hilton. They are of the following type:

Paris type(�) wordnet_municipality_108626283

Paris_Hilton type(�) wordnet_artist_109812338

To determine if a CE is of a certain type, we have marked a few CEs by hand in the

ontology as class determiners. For example, any CE that links to

wordnet_person_100007846 is a Person, and any CE that links to

wordnet_location_100027167 is a Location.

To determine the type of any entity we simply need to walk up the WordNet hypernym tree

to see if we reach any of the marked entities. For example, Paris_Hilton is a Person,

based on the path Paris_Hilton type(�) wordnet_artist_109812338 type(�)

wordnet_creator_109614315 type(�) wordnet_person_100007846. The same

Chapter V - A General Entity Recognition (GER) System Page | 99

procedure applies for Paris to determine it is a Location. If during the upward walk

through the hypernym tree no marked entity is found, then the Canonic Entity is considered

to fall in the Other category.

This cleaning step ensures that a named String Entity will not contain Canonic Entities of

another distinct type. However, it should be noted, that for completeness (because

sometimes YAGO misses to label a CE as a type altogether, even though for a human it is

obvious it should be labeled as a Person/Location/Organization), the Other category is

never removed for any String Entity. This has the effect that named SE “Paris” that has

been identified by the NER as a Location will contain CEs that are of type Location and

Other (stripping down only Organization and Person).

Even after this cleaning step, we are usually still left with many probable classes. For

example, for String Entity “California” we clean more than 90% of the 12000 possible

Canonic Entities and we are still left with around 1000 that each could be correct. There are

even cases where after cleaning there could be more than 5000 entities. However, the

majority of words are common nouns, and they have less than 25 Canonic Entities

associated, only named entities having more, usually around 100-500.

V.4.2.2. Influence Matrix Computing

The NLP pipe provides a set of String Entities but it does not provide a measure of

influence of an entity over another that we need to take into account in the processing

module. Thus, given the set of String Entities and a sentence’s dependency tree54 (obtained

in module A) we need to compute a matrix of String Entity – String Entity influence.

For example, for the sentence “The new Hyundai Accent is equipped with a 1.6 liter engine

delivering 110 hp.” the NLP pipe provides us with String Entities: “Hyundai Accent”, “1.6

liter”, “engine” and “110 hp”.

The obtained dependency tree looks like the following (type-of-dependency, governing

entity, dependant entity):

1. det(Accent-4, The-1)

2. amod(Accent-4, new-2)

3. nn(Accent-4, Hyundai-3)

4. nsubjpass(equipped-6, Accent-4)

5. auxpass(equipped-6, is-5)

6. det(engine-11, a-8)

7. num(engine-11, 1.6-9)

8. nn(engine-11, liter-10)

9. prep_with(equipped-6, engine-11)

54 Presented in section II.3., more information about dependency trees at

http://nlp.stanford.edu/software/stanford-dependencies.shtml

Chapter V - A General Entity Recognition (GER) System Page | 100

10. partmod(engine-11, delivering-12)

11. number(hp-14, 110-13)

12.dobj(delivering-12, hp-14)

Figure 24. Dependency tree example

For each String Entity we traverse the tree looking for connections to other String Entities.

For our example sentence, we discover the following:

computeInfluence for : Hyundai Accent-4 - 1.6 liter-10

 Value:1.0 subject relation but with proxy engine-11

computeInfluence for : Hyundai Accent-4 - engine-11

 Value:1.0 subject relation.

computeInfluence for : engine-11 - 1.6 liter-10

 Value:1.0 direct link for nn(engine-11,liter-10)

computeInfluence for : engine-11 - 110 hp-14

 Value:0.5 proxy for engine - 110 hp using proxy delivering-12

Figure 25. Connections found between String Entities

We determine for each String Entity a head word to use as a match in the dependency tree

(for multi-word tokens like “Hyundai Accent” we use Accent-4 as the representative for the

String Entity and hp-14 for “110 hp” – the number after the dash is the word’s position in

the sentence, as words can be repeated in the same sentence with different meanings and

influences).

We heuristically assign three distinct influence values between entities. The 1.0 value

means strong connection, 0.5 means somewhat connected and 0.1 means no direct link, but

used for context.

In the above example Accent-4 is the subject of the sentence and is thus directly linked to

engine-11 through dependency link #4 (of type nsubjpass, meaning a noun subject relation

in passive tense) and 9 (of type prep_with meaning the “with” preposition). This link will

score 1.0 meaning a strong link between them. The same score is assigned to the link

between “engine” and “1.6 liter” due to their direct link (link #8). We also check for so-

called “proxy” relations, meaning non-direct links between entities.

We perform a breadth-first search with maximum depth 2 and look for certain link types

between entities. For example, entity “engine” is linked to entity “110 hp” by the word

“delivering” (links #10 and #12).

We obtain the following matrix:

Chapter V - A General Entity Recognition (GER) System Page | 101

Influence Matrix: (ROW-Subject) has property (COLUMN-Object)

 Hyund 1.6 l engin 110 h

 Hyundai Accent: --- 1.0 1.0 0.1

 1.6 liter : 0.1 --- 0.1 0.1

 engine : 0.1 1.0 --- 0.5

 110 hp : 0.1 0.1 0.1 ---

Figure 26. Influence Matrix example

As can be seen, the matrix is not symmetrical. Hyundai Accent influences engine, but

engine does not influence Hyundai Accent. This is critical in the algorithm processing

module as many false-positives result sets can be avoided. Also, the matrix is stored as a

spare matrix, because of the large amounts of zero influences among entities (in larger

documents there can be at least one thousand String Entities identified).

A note worth mentioning is that the system’s performance is strongly connected to this

influence matrix. At times, the dependency tree fails to generate correct dependencies and

thus the final results will be rather poor due to missed links between entities. However, we

assume that parser we use (Stanford’s Parser) is among the best currently available. The

dependency tree generation, like the syntactic tree generation is a hard problem in itself.

V.4.3. Module C - Canonic Entity Processor Module

The String Entity Processor module provides sentences with delimited String Entities, each

entity having associated a set of probable Canonic Entities, as well as an influence matrix

between the String Entities themselves. Based on this data, the Canonic Entity Processor

module will provide sets of Canonic Entities sorted by descending scores.

Example: for the simple sentence “Bucharest is the capital of Romania” having String

Entities “Bucharest”, “capital” and “Romania”, we expect the Canonic Entity Result Set

with the highest score to be (Bucharest, wordnet_capital_108518505, Romania).

However, there are two steps that need to be performed prior to applying the algorithm.

First we need to create the graph on which to run the algorithm, and then we need to split

the entire array of String Entities into smaller sets that can and should be processed

independently. The splitting is needed because it is impractical (performance-wise) to run

the algorithm on tens or hundreds of entities in one run, and also because many entities do

not have any connection to each other and then the algorithm will yield many result sets

having the same score but with combinations of related entity sets that can all be valid. This

issue will be further detailed in the Process Group creation sub-section.

Chapter V - A General Entity Recognition (GER) System Page | 102

V.4.3.1. Operational Graph initialization

The operational graph is the structure from which the input graphs that the algorithm will

be run on are derived, so it is the first to be created. It is a large, directed, unweighted

graph. It should not be confused with the smaller N-partite input graphs that the algorithm

is run on, as these graphs are created based on this operational graph every time a group of

related String Entities is encountered. Figure 29 presents an example of an operational

graph.

As the ontology can be viewed as a graph, then the operational graph itself is actually an

ontology, a smaller section of the original ontology. It contains all the probable Canonic

Entities from every String Entity as well as YAGO’s top level WordNet hypernym tree. In

essence, the graph created here is a stripped down sub-graph of YAGO itself.

We need to create this graph and not directly use YAGO due to the following reasons:

1. YAGO is too large to be stored into main memory for our current available

machines. After some tests, we determined a machine with at least 12GB of RAM

would be needed to load the essential YAGO core in main memory as a graph.

Efficient processing (time-wise) cannot be performed using YAGO as a relational or

XML database stored on slow media like a hard disk.

2. We prune unneeded links from the graph itself. Not only does this increase

performance because the search space is drastically reduced, but it is needed

because of the way YAGO stores facts about entities. For example, if we ask

YAGO about Canonic Entity Paris, we will obtain the facts that Paris is of type

wordnet_city_108524735 as well as wordnet_location_100027167. The

nature of the proposed algorithm requests that we use classes that are most specific,

and we need to drop wordnet_location_100027167 because a location is more

general than a city (city is in fact a hyponym of location in WordNet’s hypernym

tree).

The first step in graph creation is the addition of YAGO’s entire top-level hypernym tree.

This will generate a graph that contains around 65000 entities and 73000 relations between

them. As can be noticed, the hypernym tree is in fact an acyclic graph containing only

subClassOf links starting from the most specific WordNet classes up to the final root class

entity. A class can have links that skip a few levels up in the tree. This is why the ‘tree’

has more links than the number of entities. However, it is conceptually easier to speak of

this acyclic graph as a tree, and we will maintain this convention throughout this chapter.

The second step is to add all the Canonic Entities assigned to every String Entity that is a

named entity. String Entities that are common words have already been included in the first

step – they can only have WordNet entities. So, for each named String Entity, every

Canonic Entity is added to the graph. However, we add not only the Canonic Entity itself,

Chapter V - A General Entity Recognition (GER) System Page | 103

but other Canonic Entities from YAGO that have connections to the original entity. We find

these related entities and links by performing a breadth-first (BF) search on the YAGO

ontology starting from the initial Canonic Entity. We limit the BF search to a maximum

depth of 3. Thus, for each Canonic Entity belonging to a String Entity we add a sub-graph

starting from the Canonic Entity. We restrict the links and entities in this sub-graph with a

few rules. First, we allow only 51 out of the almost 100 relations YAGO knows. We do this

because the rejected relations are not relevant for our search, for example relation

hasBudget between a movie and its production budget will yield no further links as the

budget is a number. Second, we ignore certain entities. For example,

wordnet_physical_entity_100001930 is too general to be of any use and all entities

will eventually link to it. Third, each Canonic Entity is a type of a WordNet class. We

accept only the most specific links between the entity and WordNet. For example for

Canonic Entity Albert_Einstein we accept only the link to

wordnet_physicist_110428004 and not the link to wordnet_person_100007846 as

physicist is more specific than a person. We thus link each entity to the most specific

WordNet class. An entity can be linked though to more WordNet specific classes, if the

classes themselves are not one-other’s hypernym up to a certain height (because all classes

eventually meet at the root node).

The operational graph is created after these two steps, containing all the initial Canonic

Entities and possible entities that may link them, as well as the complete WordNet tree to

which every entity must have at least one link to.

V.4.3.2. Process Group creation

The Process Group creation is a needed step before the algorithm itself is run. A document

can contain many sentences, and each sentence can contain many String Entities. For

example, a normal Wikipedia page can have around 500 identified String Entities and a

longer page more than 2000. The proposed algorithm provides solution sets that are as long

as the original String Entity set, and this would lead to very long processing times if the

algorithm would be run on hundreds of String Entities at once. Because we consider that

String Entities are not related between sentences or even inside longer phrases, based on the

influence matrix we obtain small sets of related String Entities that are processed

separately.

Example: let’s consider two sentences S1, S2, each having two String Entities, SEA and SEB

for S1, SEC and SED for S2. In this example the String Entities from S1 are not related to the

String Entities from sentence S2. Now, for each String Entity we have discovered three

probable Canonic Entities. The algorithm has also discovered the following link: A1-B1,

A2-B2, A3-C3, C1-D1, C2-D2 and C3-D3, every link having the same value/score. We now

have two options: Option A – consider all String Entities together, Option B – consider

Chapter V - A General Entity Recognition (GER) System Page | 104

only groups of related String Entities at a time. A Result Set is as long as the number of

String Entities provided.

For Option A. N=4, so we expect Result Sets of length 4. The algorithm provides 9 Result

Sets, all having the same score, being the combination of all the links discovered.

For Option B. we have two groups, each with N=2. This in turn generates RS1, RS2 and RS3

for the first sentence, and RS4, RS5, and RS6 for the second. In total we have 6 Result Sets.

Considering both options it is immediately clear that the result sets from A. are just

combinations of Result Sets from B, so basically Option A provided a larger number of

Result Sets that are not more informative than those generated by Option B. at the expense

of more processing time and more memory used. As a generalization, processing entities

that are not related will inevitably generate an exponential number of combinations

between the independent groups, as the algorithm tries to maximize overall Result Set

score. Furthermore, the average number of related String Entities is usually less than 10,

compared to the total number of String Entities in a document which can be orders of

magnitude larger (on which it becomes impractical to run such an algorithm). Graphical

example:

Another strong argument of group creation is that this setup of partial results suits well to

parallelization, where independent processors can handle independent entity groups,

because the operational graph is read-only and thus can be shared between threads each

Document D

Sentence S1

Sentence S2

SEA � {A1, A2, A3}

SEB � {B1, B2, B3}

SEC � {C1, C2, C3}

SED � {D1, D2, D3}

Links between Canonic Entities: A1-B1, A2-B2, A3-C3, C1-D1, C2-D2, C3-D3

How String Entities are considered:

A. All together (1 group, N=4):

RS1 = {A1, B1, C1, D1}

RS2 = {A1, B1, C2, D2}

RS3 = {A1, B1, C3, D3}

RS4 = {A2, B2, C1, D1}

RS5 = {A2, B2, C2, D2}

RS6 = {A2, B2, C3, D3}

RS7 = {A3, B3, C1, D1}

RS8 = {A3, B3, C2, D2}

RS9 = {A3, B3, C3, D3}

B. Separate groups (2 groups, N=2 for each):

RS1 = {A1, B1}

RS2 = {A2, B2}

RS3 = {A3, B3}

RS4 = {C1, D1}

RS5 = {C2, D2}

RS6 = {C3, D3}

Chapter V - A General Entity Recognition (GER) System Page | 105

handling its own group of related String Entities. Furthermore, the vast effort of graph

searching would be wasted as entities that are not related will likely not have connecting

paths between them.

Thus, we need to find the smallest independent groups of String Entities. This is achieved

by applying the flood-fill algorithm on the influence matrix Inf. First we create a copy of

the influence matrix where every value that is non-zero is replaced with a 1.0 (a black/white

table). We find the first non-zero element Infij (which in the matrix means that entity in row

i influences entity in column j) and start zeroing any element that it influences or is being

influenced by while in the mean time adding these elements to a new Process Group

(“flooding” the connected elements). This flood-fill is a breadth-first graph search on the

matrix. We repeat the process until the entire matrix is zeroed out and we have obtained all

the independent groups of String Entities.

In practice, we have observed that most often almost all entities in a sentence are related,

even if only for context (exception being long phrases that contain more sentences not

separated by usual punctuation). This basically narrows down the problem to working on a

single sentence at a time.

V.4.3.3. Linker Algorithm

This sub-module is applied to each Process Group independently. The input here is a

Process Group containing String Entities that each has a list of probable Canonic Entities

associated, and the operational graph from which to derive the input graph for the

algorithm. So, two phases are identified: first the input graph is obtained from the

operational graph, and then the algorithm is run on it. The output is a list of sorted Result

Sets.

The creation of the input graph for the current Process Group is based on the following

algorithm:

function obtainInputGraph () {

 initialize empty graph G;

 for SEi in the current Process Group (i = 0 � N) {

 for every CEi in PCESEi {

 initialize BFiterator for BF starting from CEi on the op. graph;

 while (BFiterator) {

 CEq = BFiterator.getCurrentEntity();

 If (CEq ∈∈∈∈ PCESEj with i ≠≠≠≠ j) {

 edgeWeight = getEdgeWeight(CEi, CEq);

 add to G vertices CEi and CEq (if not already added);

 add to G edge between CEi and CEq with weight = edgeWeight;

 }

 }

 }

Chapter V - A General Entity Recognition (GER) System Page | 106

 }

 return G;

}

Figure 27. Pseudocode for obtainInputGraph() function

In essence, function obtainInputGraph() performs a BF search from every CEi belonging to

a SE on the operational graph. Whenever encountering a vertex CEq that belongs to a

different SE, it calculates the score of the path between the two Canonic Entities and adds

them and the weighted edge to the input graph G. The function that calculates the path

score is presented next:

function getEdgeWeight (CEi, CEq) {

 path = path from CEi to CEq in the operational graph;

 score = getMatrixInfluence(CEi,CEq) / path.getDistance();

 if path contains changes of direction

 score = score * penalizationCoefficient;

 if path contains links of type “subClassOf” or “type”

 score = score * penalizationCoefficient;

 // other possible heuristics

 return score;

}

Figure 28. Pseudocode for getEdgeWeight() function

The getEdgeWeight() function calculates a score between two Canonic Entities in the

operational graph based the path between them. First, the score is calculated as the value in

the influence matrix between the String Entities representing them, divided by the distance

between them. For example if a two String Entities are strongly connected (influence

matrix value of 1.0) but their representing Canonic Entities are found to be linked by a path

of length 2 (meaning an intermediate Canonic Entity), then the initial score will be 1.0/2 =

0.5.

Next, we apply some heuristics, such as the one used by Hirst and Onge [134] in their

semantic distance measure for WordNet, penalizing the changes of direction in the path

from one entity to the other, or discriminating between relation types. For example if

between two named entities there are 2 or more links of type subClassOf or type then we

penalize the score. A link like Entity_A type(�) wordnet_village subClassOf(�)

wordnet_city type(�) Entity_B is not very informative, and can lead to erroneous

results, linking two entities just because they are of the same general type in this instance.

The penalization coefficient is a variable, set heuristically at 0.5, halving the score

whenever encountering an unwanted path type. The resulting score is then returned as the

weight the edge between the two Canonic Entities will have in the input graph.

In summary, obtainInputGraph() performs several BF searches on the operational graph to

build an undirected weighted input graph.

Chapter V - A General Entity Recognition (GER) System Page | 107

System Example: Revisiting the initial example of this chapter, we illustrate here the

process for the sentence “He replaced the pipe giving his car new life - his Santa Fe now

runs quieter.”. String Entities “pipe”, “car”, “life” and “Santa Fe” are extracted in the first

module of the system. Next, in module B the influence matrix is computed and Canonic

Entities from the ontology are associated to each SE. Next, in module C the operational

graph is created. First the WordNet hypernym tree is added, then every CE from each SE is

taken as a starting point for a breadth-first search in the ontology, and every neighbor of the

CE is added to the operational graph, up to a depth of 3. The figure below shows this

operational graph (only a small section). We consider that we only have a single Process

Group containing all the String Entities.

The obtainInputGraph() function is run on the graph for the set of String Entities. SE “life”

is not shown in the image as no path was found from any of its CE set to any CE of other

SEs. Paths exist, but they are of length greater than 3, and thus ignored. For every starting

CE the breadth search is performed and a graph like the one in the following figure is

obtained:

car

pipe_major

Santa_Fe_(group)

stock_car

Hyundai_Santa_Fe

pipe_bomb

bomb

car_bomb

exhaust

automobile_engine

exhaust_pipe

musician

piper

type

subClassOf

subClassOf

subClassOf

subClassOf

isPartOf

isPartOf

type

isPartOf

subClassOf

Classes of SE

“pipe”

Classes of SE

“car”

Classes of SE

“Santa Fe”

Figure 29. Operational graph

Chapter V - A General Entity Recognition (GER) System Page | 108

The obtained input graph is much smaller and simpler. The only vertices are the starting

Canonic Entities. The undirected weighted edges represent the paths between the Canonic

Entities from the operational graph. The input graph created in this manner is actually a k-

partite graph. For example, even though CE stock_car does not have a direct link to any

other CE belonging to a SE, it is still connected to Hyundai_Santa_Fe through car. In

the input graph thus choosing stock_car over car is a valid choice, if the combined score

of the chosen entities would be higher than using directly car.

After obtaining the input graph, the Linker Algorithm is applied. It runs the four steps

presented in the previous section in sequence.

First it searches the graph for any duplicate links and creates the edge dictionary and the

vertex hash set.

Then, in the second step, it performs a custom depth-first search. At the end of each search,

whenever adding another vertex is not possible, respecting the constraint that a solution

cannot have two vertices belonging to the same partition, it adds the path obtained until that

point to the Result Set Array. It is added to the array if the solution is not a subset of

another Result Set, in which case it is discarded, or it cannot be merged with any other

Result Set.

After the search space has been exhausted, for every solution it computes its score based on

the weights of the edges, and then sorts the Result Set Array (only required if the following

step 4 is not applied).

The last step is to obtain a merged Result Set Array, where non-overlapping Result Sets are

combined to create the most specific Result Sets possible. This larger Result Set Array is

finally sorted, and represents the solution to the problem of detecting the best choice of

Canonic Entities that represent the String Entities extracted from the text document.

car

pipe_major

Santa_Fe_(group)

stock_car

Hyundai_Santa_Fe

pipe_bomb

car_bomb

exhaust_pipe

0.3

Classes of SE

“pipe”

0.45
0.2

0.03

0.06

Classes of SE

“Santa Fe”

Classes of SE

“car”

Figure 30. Input graph derived from the operational graph

Chapter V - A General Entity Recognition (GER) System Page | 109

V.5. System evaluation

We start the GER system evaluation first from a computer hardware point of view. We

have run the complete system on a standard 2.8 GHz, 64 bit machine with 8 GB of RAM.

RAM is largely needed to store the models used by the Stanford CoreNLP and other

support tools, at almost 3 GB in total. The developed system itself uses at maximum

another 2-3 GB, for everything from the syntactic and dependency trees, influence matrix to

the operational graph and edge dictionaries for the algorithm.

Due to the splitting of string entities into independent Process Groups, the algorithm

computationally performs very well, because usually in a single set there are no more than

4-8 entities, a number for which processing is almost instant, even though there usually are

anywhere from a few tens to a few thousand of probable entities (vertices in the graph) for

each String Entity in the individual set. Even better, due to the independent nature of

process groups, they can be run in parallel without any algorithm modification (as

explained in a previous section).

A point needed to be made, the bottleneck of the system in terms of run-time is the

ontology interface. Even though a query is answered in milliseconds, there are thousands of

these calls to the database. From obtaining the PCE for every String Entity to creating the

graph by starting a BF search on the ontology from every CE in every PCE (that could

potentially have thousands of additional CEs discovered), the need to access the hard drive

for the vast majority of them (the database cache is almost useless here as almost every new

query is different from the previous ones) is actually by far the slowest part of the system

(more than 95% run-time is lost here).

V.5.1. Evaluation methodology

Evaluation of the system’s results from an accuracy point of view is a somewhat difficult

task as we have found no other systems to compare ours with because of our particular

setting: we cannot apply the system to reference test corpora like the ACE 2003/2004 or

other similar Sens/SemEval corpora because we rely on a large generic ontology and not on

a subset of entities, and we handle both named and common entities (basically the proposed

system does not fit completely into any of the ACE/MUC/SemEval tasks). Also, we cannot

restrict our working entity set because the system is working better the larger the entity set

is and the connections number within it. Our knowledge base is actually our entire search

and result space. The larger the number of entities and relations, the larger the number of

resulting assigned classes. However, we can manually create a set of tests and measure our

system’s performance against them.

Chapter V - A General Entity Recognition (GER) System Page | 110

As such, in our problem setting, we measure the accuracy of the Canonic Entities

assignation in the following manner: for example, for the sentence “Smith was born in

Farmersville, a small town in California.” we extract String Entities (“Smith”,

“Farmersville”, “town”, “California”). For the Result Set (∅∅∅∅,

Farmersville,_California, wordnet_town, California) we assign a 4/4 (100%

accuracy) score because it matched all the preset entities: 1. it correctly identified that

Smith could be any person (“∅∅∅∅” meaning that either YAGO does not contain any possible

canonic entities for “Smith” or more likely that no links have been found between any

canonic entities representing Smith to any other entities), 2. “Farmersville” is correctly

identified by Canonic Entity Farmersville,_California, 3. “town” is correctly

identified by wordnet_town and 4. “California” is correctly identified by California

Canonic Entity. If for example instead of ∅∅∅∅ it would have been Canonic Entity

John_Smith, then accuracy would have dropped to 3/4 (75%), because even if there is

some long, improbable, low scoring path between John Smith and Farmersville, such as

John_Smith bornIn(�) San_Francisco type(�) city type(�)

Farmersville,_Califonia, for a human there is no logical link, because we know (or

at least agree by general consensus or by probabilistic reasoning) that no generic John

Smith was actually born in a small town in California named Farmersville. We thus

evaluate the system against human judgment on which Canonic Entities should correctly

represent String Entities. Accuracy is calculated as the number of correctly assigned

Canonic Entities to String Entities divided by the total number of String Entities.

V.5.2. Evaluation set and standard creation

The evaluation set consists of 40 sentences, each with minimum 3 String Entities and a

maximum of 14. The sentences belong to Wikipedia snippets and news article phrases. In

total, the 40 sentences contain in total a number of 211 String Entities. This averages to 5.3

String Entities per sentence. The distribution of named versus common String Entities is a

bit different from the 34%/66% obtained from the document test set for algorithm

performance, to 45%/55% in our sentence set (2.4 named String Entities and 3.1 common

String Entities per sentence or 95 named and 116 common String Entities).

To obtain a “gold standard” (a test set considered as 100% accurate by humans) a small

application was created to reduce the time needed to create the standard. For each of the

221 String Entities the application returns every YAGO Canonic Entity that could represent

that entity. So, for every String Entity extracted, its Possible Canonic Entity set was

obtained, but sorted in a tree-like manner by entity type, for annotator ease of usage and

speed. For example, when searching for String Entity “Maryland” YAGO returns exactly

1776 Canonic Entities (before cleaning – the same cleaning method as the one described in

the system in a previous section) like:

Chapter V - A General Entity Recognition (GER) System Page | 111

-- “Maryland” --

Maryland_Route_396

Maryland_Institute_College_of_Art

Maryland_(automobile)

USS_Maryland_(SSBN-738)

Maryland_Symphony_Orchestra

Maryland_Exiles

…

Maryland

…

As there are four major entity types (for named entities only), four checkboxes were

implemented: Person, Location, Organization and Other. Clicking on any will show only

Canonic Entities of that type (all Canonic Entities have the type property linking them in

the WordNet hypernym tree, thus being able to detect the type of entity). For example,

checking Location will show only entities like Maryland or Sandy_Spring,_Maryland.

This is done by checking the type facts belonging to each Canonic Entity. For example, for

Maryland we discover that Maryland is of type wordnet_district_108552138.

When further investigating wordnet_district_108552138 we find it is actually a

subClassOf wordnet_region_108630985 which in turn is a subClassOf

wordnet_location_100027167. Any entity that links up to

wordnet_location_100027167 is a Location entity. Similarly for Person and

Organization. If it is does not reach any of these three predefined entities, it falls into the

Other category.

However most of the entities are of type Other. For entities that are unknown for the person

creating the standard, clicking on an entity will display in an adjacent window the entity’s

properties. For example, at first sight entity, a person does not know what

Maryland_Exiles mean. Clicking on the entity in the list will show up the following

properties:

Maryland_Exiles

type � wikicategory_US_rugby_union_teams

type � wordnet_team_108208560.

describes � http://en.wikipedia.org/wiki/Maryland_Exiles

From this information alone it is obvious for a person that when speaking whether

Maryland won this season we are actually talking about the rugby team named Exiles, and

the fact that String Entity “Maryland” in that sentence should be represented by

Maryland_Exiles (rugby team) and not, for example, by Maryland (location). The

arrow displays the relation direction. A right pointing arrow indicates that

Maryland_Exiles is the subject. An inverse relation means Maryland_Exiles is the

object.

Chapter V - A General Entity Recognition (GER) System Page | 112

For common String Entities we come up on another problem. While for named entities the

problem was the large number of them, for common entities the issue of sense becomes the

main problem. For example for String Entity “bank” (in a sentence where bank is used in

the economic context) we find Canonic Entities like:

wordnet_agent_bank_108418316

wordnet_bank_100169305

wordnet_bank_102787772

wordnet_bank_108462066

…

wordnet_bank_113368318

…

wordnet_banker_109837720

…

wordnet_piggy_bank_103935335

…

In this type of list we easily figure out the correct entity, which is (for our example) a bank,

without any modifiers. However, here comes the problem – there are 8 senses for

wordnet_bank_#id. For this problem the most obvious choice (as we don’t have access

to the glosses in WordNet) is to move up the hypernym tree. The same mechanism of

hovering or clicking on a named entity will now show for a common entity the following:

wordnet_bank_100169305

 � 0>subClassOf wordnet_flight_maneuver_100170844

 � 1>subClassOf wordnet_maneuver_100059552

 � 2>subClassOf wordnet_evasion_100059127

wordnet_bank_102787772

 � 0>subClassOf wordnet_depository_103177349

 � 1>subClassOf wordnet_facility_103315023

 � 2>subClassOf wordnet_artifact_100021939

wordnet_bank_108462066

 � 0>subClassOf wordnet_array_107939382

 � 1>subClassOf wordnet_arrangement_107938773

 � 2>subClassOf wordnet_group_100031264

wordnet_bank_109213434

 � 0>subClassOf wordnet_ridge_109409512

 � 1>subClassOf wordnet_natural_elevation_109366317

 � 2>subClassOf wordnet_geological_formation_109287968

… etc …

From this display it is obvious for a person that the correct choice is the second one:

wordnet_bank_102787772, considering that its direct hypernym is a depository

Chapter V - A General Entity Recognition (GER) System Page | 113

Using this small application that automates YAGO discovery, the three persons annotating

the sentences took only a few seconds to a minute per String Entity to select the correct

meaning (as opposed by just navigating a very large list of possible entities which would

have taken a long time). This created the “gold” standard needed on which to test the

system against.

Before moving on to evaluate the system using this standard, it should be noted that the

task of annotating is difficult, in the sense that different people annotate differently. For

example, when annotating the simplest of sentences: “The car has an engine”, for String

Entity “engine” we obtain the following possible Canonic Entities:

wordnet_internal-combustion_engine_103579982

wordnet_automobile_engine_102761557

wordnet_gasoline_engine_103424630

wordnet_aircraft_engine_102687423

wordnet_gas_engine_103422771

wordnet_engine_103287733

…

Given these choices, which is the correct one? In essence all could be correct as they are

just more or less specific types of engine. The sentence itself does not say that the car is a

diesel or a petrol, so maybe the types of engine that specify that should be rejected as valid

Canonic Entities. Given the lack of any additional information in the sentence, the car could

actually be powered by a steam engine or even a jet engine (in the case of land-speed record

vehicles). However, the choice between wordnet_engine_103287733 and

wordnet_automobile_engine_102761557 is less clear, as the term “car” in usual

usage is actually an automobile. Because of the same lack of information, we do not know

if it is an automobile, but common logic says it is, based solely on that almost all the times

when we use the term “car” we are referring to an automobile.

This issue was resolved by letting the annotators choose multiple correct choices. However,

to enforce some strictness, a Canonic Entity was considered valid if two of the three

annotators marked it as correct.

It should also be noted that String Entities that were found to not have any correct Canonic

Entity were marked as null, meaning that the system should not pick any CE to represent

that SE. This happens in two cases, first if YAGO does not know about an entity (YAGO

was created on a Wikipedia dump from 2009 and there are official persons in the news that

were unknown then, thus impossible to appear in Wikipedia and therefore YAGO), or if the

String Entity denotes an generic entity (ex: sentence from a blog entry: “Ann walks among

the houses, … “, where Ann is just a normal person, that should not have a corresponding

Canonic Entity in the ontology).

We estimate an ITA (inter-annotator agreement) for the current task of around 60% (given

that the annotators were not related to the NLP/linguistic field). Similar results were

Chapter V - A General Entity Recognition (GER) System Page | 114

obtained for fine-grained tasks, for example [94] reports an ITA on WordNet senses

between 67% and 80%. The most common issue was which and how many of the selected

Canonic Entities to be allowed in the “gold” standard considering that annotators

sometimes picked several general and specific entities as correct. The ITA was calculated

the number of times that at least two annotators came up with the same correct Canonic

Entity set per String Entity divided by the total number of String Entities.

V.5.3. Testing the system

The system was run, and we evaluated the first Result Set for every processed group of

String Entities (the system outputs a descending sorted array of Result Sets – in this case

we only looked at the first RS). We obtained an arguably low/average performance of

22.3% for this strict evaluation method.

Performance is affected because in many cases we run into one or both of the following

issues:

Issue 1: the system cannot yet discriminate between similar scoring Result Sets with

similar entity types. Given the sentence “Alan Mulally has just announced the new Focus

with a 1.6 liter engine.” with string entities “Alan Mulally”, ”Focus”, “1.6 liter” and

“engine”) and the first two scoring Result Sets:

RS1: 2.0 (ANY, Ford_Focus_WRC, wordnet_liter, wordnet_automobile_engine)

RS2: 2.0 (ANY, Ford_Focus, wordnet_liter, wordnet_automobile_engine)

As can be seen, the only difference between the two Result Sets (both scoring equally at

2.0) is that “Focus” could be either a Ford Focus WRC or a generic Ford Focus vehicle.

Both entities are present in YAGO with the same type of links, and no information can

differentiate one over the other. Because YAGO does not know that the WRC Focus is

actually a modified type of standard Focus, then it will treat both entities as equal possible

representatives for String Entity “Focus”.

Issue 2: the ontology lacks information in the form of relations between entities, and the

system biases certain links to compensate for the lack of this information by penalizing a

few link types. The act of finding a suitable coefficient for penalization, as the entire

heuristic penalization method itself is just an attempt to “correct” the choices the system

makes, usually with different degrees of success – a certain coefficient will generate good

RSs for a sentence and break other previously-well performing sentences. In quite a few

Result Set Arrays we find Result Sets with the correct choice for Canonic Entities having a

score just a bit lower than the best scoring RS, because of the penalization coefficient. Just

like issue 1, this issue is unavoidable.

We propose two more ‘forgiving’ evaluation methods, in which we relax allowed results.

Chapter V - A General Entity Recognition (GER) System Page | 115

The first of the two evaluation methods implies ignoring issue 1. This means we look to see

if in any of the equal top-score Result Sets we have correctly identified Canonic Entities.

To exemplify this relaxation, if we take the Ford Focus example above, we would get for

that sentence a (4/4) 100% accuracy, because even though the system’s default choice is

RS1 which only evaluates to 3/4 (75%) accuracy, we inspect also RS2 because it has the

same top score, and we detect that RS2 actually provides a better 4/4 (100%) accuracy.

The relaxation of the second issue means that we allow searching for correct results in

lower scoring Result Sets. Result Set scores usually are not distributed linearly (meaning

Result Sets have many slightly different scores) but tend to be distributed in a step-like

manner (meaning that we have relatively few different scores, implying many Result Sets

having the same score). Because of this property, we allow searching for correctly

identified Canonic Entities in Result Sets having the second- and third-best scores.

The table below shows the accuracy obtained when using these new evaluation criteria.

Table 2. Accuracy of system against a manually created standard

Evaluation method System Accuracy

Strict evaluation (first RS only) 47 / 211 (22.3%)

Evaluation w/o issue 1 76 / 211 (36.0%)

Evaluation w/o issue 1 & 2 89 / 211 (42.2%)

The results show that when evaluating on somewhat more relaxed criteria, the initial

accuracy almost doubles, from the initial figure of 22.3% to 42.2%. The last figure itself is

quite impressive, meaning that in almost half of the cases the system was able to determine

the matching Canonic Entities within the first few top scoring results.

While our initial overall results with this system are average, we can conclude on some

points:

First, the results depend heavily on the type and composition of sentences tested. For

sentences with entities in areas of the ontology with higher information density, results are

usually better, because of the increased link number and not necessarily because of the

scoring function. This function is an important performance affecting factor: we have used

a distance-based function, which is sensitive to information density fluctuation, a problem

practically unavoidable in large general ontologies.

Second, calculated accuracy depends even more on the human created standard to which

results are evaluated against. But currently we can only evaluate the proposed system on

such a standard. The standard was created by people reviewing possible classes extracted

from YAGO manually and assigning them as correct answers to each String Entity. Even

so, misunderstandings have been rather common between the annotators because of the

Chapter V - A General Entity Recognition (GER) System Page | 116

large number of apparently correct classes. Also, a standard baseline was very difficult to

establish. Standard baselines like random-sense or first-sense are hard to implement

because we work with both named and common entity identification, meaning we do not

have a ‘first sense’ as we could have had if evaluating only common nouns for example.

Also, because of the number of seemingly good responses (especially for named entities)

among a very large number of possible classes, a random baseline would yield

uninformative results. For example, String Entity “Hyundai” could mean the ship building

company, the auto company or any of its 30+ car models, all being named entities. Though

not comparable, for a general overview, SemEval 200755 yielded results in the 50%-60%

performance range for fine-grained tasks (with a maximum 10% above the baseline for the

best system for their 465 tagged words), underlining the task’s difficulty.

Third, context is highly important. For example for sentence "Hyundai has launched a new

car named Santa Fe.", with string entities “Santa Fe”, “car” and “Hyundai”, we obtain the

Result Set (Hyundai_Tucson, wordnet_car_102958343, Hyundai_Santa_Fe)

scoring 2/3 accuracy because the system thinks that “Hyundai” could mean

Hyundai_Tucson which is a car similar to its partner CE Hyundai_Santa_Fe, instead of

the arguably correct Hyundai_Motor_Company. However, for the sentence "Hyundai has

launched the new Santa Fe." we obtain (Hyundai_Motor_Company,

Santa_Fe_Industries), because of the conceptual link between Santa Fe Industries and

Hyundai Motor Company as they are both industries, and missing the link to the auto

vehicles because of insufficient evidence for Santa Fe being a car;

Forth, the proposed algorithm efficiently makes the most of the information available to it.

Where links are available, it finds all possible connections, evaluates them all in a single

pass instead of processing an exponential number of entity combinations, and based on the

scoring method, creates the result best sets given the available information.

V.6. Conclusions

In this chapter we have presented a knowledge-based system that presents a viable

algorithm and encouraging first results for entity identification and correct class assignation

from ontologies. We aim to show that ontologies can be used for more than just standard

classification of the entities they contain, and that the structure itself of such large generic

ontologies can be used to generate added value. Furthermore, we have presented an

algorithm that provides fast results in a single pass for the current problem of evaluating the

best combination of every possible entity assignation. Using a standard combinatorial

approach where each entity would be tested against every other, the problem would quickly

grow unsolvable even for a few entities.

55 SemEval 2007 - http://nlp.cs.swarthmore.edu/semeval/index.php

Chapter V - A General Entity Recognition (GER) System Page | 117

As a conclusion we note the major issues that influence performance to a large degree:

1. Dependency tree generation. In most cases the tree is correctly generated, but it also

happens that the parser misses or incorrectly assigns dependencies between words

that lead to a poor starting point for the influence matrix creation.

2. Matrix creation rules. The matrix is generated by parsing the dependency tree. As

rules are heuristically created, new rules or improved versions can be implemented.

3. Scoring function. Same as the matrix creation, the scoring function has been

heuristically chosen. As with existing similarity measures for WordNet for example,

variations of the scoring function applied in the same algorithm can be created for

improved system performance. While we used a distance-based scoring method,

which by default suffers from large variations in information density [96], it does

provide a good performance and is applicable to both named and common entities,

even though named entities are linked in a random graph of direct links while

common entities are linked in a hypernym tree. For this reason a conceptual-density

[125] measure is arguably risky to implement.

4. Knowledge source. The most important factor in the system’s performance by the

largest margin is the ontology used. For sentences where there is a large

information amount about a subject, results will be surprisingly good, while lower

information densities will yield poor results. As time passes and knowledge sources

get richer, even without any change to the system, its performance will increase.

Chapter VI - A knowledge-based approach for document classification Page | 118

VI. A knowledge-based approach for document

classification

VI.1. Introduction

This chapter presents a knowledge-based, unsupervised approach to the problem of

document classification in respect to a set of topics.

The system we propose takes as input unclassified text documents and a set of possible

topics, and outputs the n-best possible topics for each processed document. It uses the

ontology as a knowledge source on which it applies graph algorithms to detect and create a

partial sub-graph illustrating the relations between the concepts that characterize each

document. Thus, our solution avoids the use of machine learning algorithms in the main

processing phase, while only employing such algorithms in the document pre-processing

phase for sentence identification, token splitting and named entity recognition (standard

NLP pipeline).

The proposed approach is presented as an implemented, working system that uses the

YAGO ontology as its knowledge source in order to perform unsupervised, natural

language document classification. We also engage in a discussion on the benefits and

problems of using ontologies for such a task.

The system presented in this chapter, while using some of the same methods and tools as

the GER system presented in the previous chapter, represents a distinct contribution with a

different goal.

VI.2. Domain Literature Review

The domain of text classification is, at present, dominated by machine learning and

statistical methods, with knowledge engineering methods trailing behind [135]. While a

large variety of approaches can be observed, the best performing systems consistently use

algorithms like SVM (Support Vector Machine) to achieve consistent and good results, a

class of supervised machine learning (ML) algorithms.

ML algorithms like SVM, Naive Bayes or Maximum Entropy are relatively simple to

understand and use, and unlike knowledge engineering methods, they do not require large

knowledge-bases to be manually pre-defined by engineers. Also, this category of systems is

not domain related, unlike most knowledge engineering approaches which are focused on

sub-domains (as it happens, for example, in the medical domain where compact parts of

Chapter VI - A knowledge-based approach for document classification Page | 119

consecrated ontologies are adopted for certain medical specializations). The functioning of

these algorithms usually requires the “translation” of the documents into feature vectors.

Common construction of feature vectors involves term frequency, document frequency,

term frequency and inverse document frequency combined, information gain, term strength,

and chi-statistic [136] [137].

Latent Semantic Indexing (LSI, also known as Latent Semantic Analysis or LSA) has been

used in conjunction with WordNet or other domain ontologies to reduce the dimensionality

of feature vectors [138] [139]. The main idea of LSI is that there is a semantic structure

between words in a document that can be discovered and used to group similar documents

into similar space structures using statistical analysis. Using LSI means that after document

preprocessing, the document vector is obtained (in the form of

d={(keywordi,weighti)|i=1..n}, its dimensionality is reduced using LSI and then it is

compared to every category vector topic. The category vector that is closest to the

document vector is the topic assigned to that document. [140] showed an slight increase in

performance when using LSI and an ontology as opposed to simply using a Naïve Bayes

classifier (or equivalent) and an ontology. In [141] we developed a text classification

method where the LSI technique was combined with a WordNet-based text analysis.

However, while LSI is effective in mitigating word similarities, it is quite difficult to

maintain such a system when the document size varies and any modification of the initial

set of documents requires the entire semantic space to be reconstructed [142].

Concerning the ontology-based approaches of text classification, it can be observed that

domain ontologies are most often used [143]. Domain ontologies are usually small and

contain very specific facts about a domain, like certain group of illnesses for the medical

domain, names and hierarchy of wines for the oenological domain or car parts for the

automotive domain. When applied to a collection of texts from a certain area, a domain

ontology focusing on that area will be much more effective than a general ontology.

However, for diverse collections of documents, the use of domain ontologies is no longer

possible.

VI.3. System Implementation

This section discusses system architecture and implementation. The system can be logically

divided into three major modules: Processor, Analysis and Evaluator.

Processor Analysis Evaluator

Ontology

Raw

doc.

List

of

topics

Figure 31. Document classification system architecture

Chapter VI - A knowledge-based approach for document classification Page | 120

A quick overview of how the system works: First, at initialization phase, the topic list is

constructed. Then a document is fed to the Processor where it is parsed and tokens are

extracted from it, along with other useful information, as word frequency and word type,

form, etc. The tokens are analyzed and String Entities are created based on these tokens. A

String Entity is a simple string representing a token or multiple connected tokens (for first

and last names or for composed nouns, etc) – we use the definition of String Entity from

section V.2. In the Analysis module, the String Entities are searched for in the ontology and

possible Canonic Entities (also defined in section V.2. – as a side-note, throughout this

chapter we may omit writing their trailing IDs if they are not relevant) are associated to

each String Entity. A String Entity can be represented by a Canonic Entity from the

ontology. Based on YAGO, a graph containing every Canonic Entity of every String Entity

is created. Based on this constructed graph, links are found between topics and String

Entities. Thus, topics are scored depending on these links. After all String Entities have

been processed, the topics are sorted by their descending score in the Evaluator module.

The topic with the highest score is the document’s proposed topic. Below, we present each

module, starting with the initial topic list creation.

VI.3.1. Topic list creation

The topic list creation is not a module in itself, but rather an essential initialization step,

hand-built into the system.

We assume the system will deal with a fixed number N of topics. In our case, N = 50, as we

use the LA’ 94 news articles data collection56 for evaluation. For each of the topics, we

create an array holding a variable number of topic concepts (TC). A topic concept is

actually a simple word, concept, idea. Thus, several topic concepts are needed to define one

topic.

A topic concept has a name (a simple word – a string), a weight (a real value number) and a

score (also a real value number). From an implementation point of view, as the topic

concept cannot be represented by a simple string – its name, it contains an array of classes

from our knowledge source, along with a weight of the class itself representing how

relevant that class is for the topic concept. We use YAGO as the knowledge source, so the

array contains YAGO entities.

Example: Given topic #53 (topic ids start from #41 to #91 in our test collection) “Genes

and Diseases”, we create the following 5 topic concepts:

56 LA94 news articles collection, http://trec.nist.gov/data/docs_eng.html

Chapter VI - A knowledge-based approach for document classification Page | 121

Topic top = new Topic(“53 Genes and Diseases”);

tc = new TopicConcept("gene",1.0);

tc.addWord("wordnet_gene_105436752", 1.0);

tc.addWord("wordnet_genotype_107941405", 1.0);

top.addNewTopicConcept(tc);

tc = new TopicConcept("disease",1.0);

tc.addWord("wordnet_disease_114070360", 1.0);

tc.addWord("wordnet_illness_114061805", 1.0);

tc.addWord("wordnet_disorder_114052403", 1.0);

…

top.addNewTopicConcept(tc);

tc = new TopicConcept("body",1.0);

tc.addWord("wordnet_body_105216365", 1.0);

tc.addWord("wordnet_torso_105549830", 0.5);

…

top.addNewTopicConcept(tc);

tc = new TopicConcept("human",0.7);

tc.addWord("wordnet_homo_102472293", 1.0);

top.addNewTopicConcept(tc);

tc = new TopicConcept("syndrome",1.0);

tc.addWord("wordnet_syndrome_114304060", 1.0);

top.addNewTopicConcept(tc);

The above code shows the structure of a topic and how it is created. The topic in question

has 5 topic concepts. The topic concepts have different weights associated. For example, in

this case topic concept “human” is assigned a weight of 0.7 instead of the maximum weight

of 1.0, meaning that if encountered it is less relevant than other topic concepts. Each topic

concept has at least one representative class from YAGO. For example, topic concept

“body” has more YAGO entities associated, out of which wordnet_torso_105549830

has weight 0.5, meaning is not as relevant to the topic concept as for example

wordnet_body_105216365 is.

As such, each topic has a number of weighted topic concepts, each topic concept being

defined by a number of weighted YAGO entities. The weighing allows a fine-grained

control over entity/concept influence. The weights associated are heuristically chosen, in

increments of 0.1. It can be observed that topic concepts actually encode simple

words/concepts. Thus, common concepts like “corruption”, “government”, “military”,

“fruit”, “food”, etc will be shared among several topics.

Topic Concept 1

Topic #53

Topic Concept 2

Topic Concept 3

Topic Concept 4

Topic Concept 5

Chapter VI - A knowledge-based approach for document classification Page | 122

The topic list initialization is among the most important aspects of the system, as it plays a

central role in the system’s performance. As can be seen, the topic concepts have been pre-

programmed into the system manually.

This was done for a number of reasons, the primary one being that Word Sense

Disambiguation is a yet unsolved problem and current systems do not perform at a

sufficient performance level (as for example POS taggers that have 95-98% accuracy) to be

included as trusted modules in an application (as discussed in the previous chapters). Fine-

grained WSD performance is even worse than standard coarse-grained WSD, and we are

working in a fine-grained environment. Because in this phase we chose the correct YAGO

entities to represent the topic/topic concepts, meaning we performed the WSD manually,

this will mostly alleviate the problem of WSD when analyzing the documents later.

Another reason is that the system is purpose-built for document classification. This means

that in real world usage the number of categories (topics) is rather small and constant. We

argue that given an initial effort to define the categories in an appropriate manner, then the

system can be run as-is without any human intervention, except maybe adding another topic

when necessary, a task that is done very fast.

The topic list was introduced programmatically in the system. However, the YAGO entities

and the initial topic suggestions were done automatically. We wrote a small helper

application that iterates over all topics, extracts the words, uses WordNet to suggest

synonyms and YAGO to suggest named entities where necessary. Human intervention was

required to add new topic concepts, delete or adjust weights of existing topic concepts, and

to remove YAGO entities that are irrelevant for topic concepts. So, in some sense, the topic

list was created semi-automatically. Ironically, for the 50 topics evaluated, the work needed

by a human annotator was actually far less (a few hours) that the time needed to write the

helper application.

VI.3.2. Processor Module

This initial module takes in a natural language text document and outputs a list of String

Entities, each one having associated a set of probable classes (Canonic Entities) from the

ontology.

From a functionality point of view, this module is similar to the preprocessing module of

the GER system presented in the previous chapter. As such, using Stanford’s CoreNLP57,

the text document is first split into sentences. Each sentence is further split into individual

words (tokens). The tokens are then analyzed and their part of speech is determined, their

form (singular or plural – if the word is in its plural form, it is transformed to its singular

form) and whether the token is a named entity or a simple common word (using an English

57 Stanford’s CoreNLP package can be found at : http://nlp.stanford.edu/software/corenlp.shtml

Chapter VI - A knowledge-based approach for document classification Page | 123

dictionary to recognize common words). The named entities (which are first recognized by

their ‘NNP’ part of speech tag58) are assigned a general category by the Stanford NER (part

of Stanford’s CoreNLP suite), such as Location, Organization, Person or Other. Punctuation

tokens, numbers and dates are ignored.

Next, individual tokens (nouns only) are analyzed to see whether they form multi-word

tokens. After this step, we will refer to the tokens as String Entities, as a String Entity may

span multiple adjacent tokens. Then to each String Entity is associated a set of Canonic

Entities from the ontology.

String Entity processing is done differently for named entities and common entities.

Named String Entities

Named entities are grouped together based on their category. If named entity tokens are

adjacent and have the same category tag, they are joined into a single String Entity.

Example: For example, even if punctuation is omitted, the entities in the fragment “By/-

visiting/- Sydney/L Ann/P Marie/P has/- …” will be correctly processed into two String

Entities, even if all three named entities are together. “Sydney” will be the first extracted

String Entity because it has tag L – Location while the adjacent named entities will be

grouped into String Entity “Ann Marie” because they both are of type P – Person.

Next, for a named String Entity YAGO is queried using the means relation. This relation

provides an entry in the ontology by having a list of strings that point to a Canonic Entity.

These strings are not unique and a string can mean several Canonic Entities. Similarly a

Canonic Entity can be represented by several different strings. So, for each named String

Entity of the form “word1 .. wordn” YAGO is queried as ‘Select all Canonic Entities where

relation is means and the string argument is “%word1%word2% .. %wordn%” ’, where %

means any character or string. A query for String Entity “Ann Marie” would look like

“%Ann%Marie%” and would return Canonic Entities Ann-Marie, Ann_Marie,

Princess_Ann_Marie, etc.

Furthermore, the category tag is considered. Using the method presented in the previous

chapter, the type of any Canonic Entity can be determined. In summary, because we have

only four large categories, out of which one is Other, we mark three Canonic Entities in the

ontology, one for Person, one for Location and one for Organization. As any extracted non-

WordNet CE has a type relation that links to a WordNet CE, following a few links up in

the hypernym hierarchy will find one of the three CEs marking the type. If none of these is

found, then the initial CE is of type Other. So, after the query for the String Entity is

completed and all matching CEs are obtained, each CE is assigned a type out of the

possible four. If the assigned type is not of the type of the String Entity itself, the CE is

58 These are Penn Treebank style POS tags. http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html

Chapter VI - A knowledge-based approach for document classification Page | 124

discarded. This ensures that if for example String Entity “Sydney” is determined as a

Person, then all Canonic Entities that can represent Sydney and are locations or

organizations are discarded. This processing usually halves the number of possible Canonic

Entities associated to any named String Entity.

Common String Entities

The processing for common entities is a bit more computationally and I/O intensive. To

determine if we deal with multi-word common String Entities we search for nouns

separated by maximum of two non-noun, non-verb tokens. We obtain patterns like (noun1

noun2), (noun1 word noun2) or (noun1 word word noun2). The linking words cannot be

punctuation marks, numbers, any other nouns or verbs or else the obtained pattern is

discarded. Furthermore, the two nouns must be in the same noun phrase (determined by the

syntactic tree of the sentence).

Next, the two nouns are searched for in the WordNet section of the ontology (in YAGO

WordNet is represented as the hypernym hierarchy to which all other entities must link to

by at least one type relation). All common Canonic Entities that contain both nouns are

kept for further analysis. These initial CEs are iterated over. For each CE the linking words

between the nouns have to match the linking words in the String Entity. For some CEs

there might be extra words before the first noun or after the second. These words must

match external words of the String Entity. If there are no remaining CEs then the String

Entity is not multi-word, and the initial noun is kept as the only token. Class assignation for

single word String Entities is a bit different that for multi-word, and will be described after

an example of multi-word common String Entities.

Example: A sentence extracted from a news article: “Failure to take into account some of

the effects predicted by the second law of thermodynamics has led to the failure of the

initial prototype.”. Nouns are extracted sequentially. When reaching “law” we analyze

nouns at a distance of maximum two, finding “thermodynamics”. A pattern is obtained (law

of thermodynamics). The pattern is valid, as both nouns are in the same noun phrase (NP):

(NP

 (NP (DT the) (JJ second) (NN law))

 (PP (IN of)

 (NP (NNS thermodynamics))

)

)

YAGO is queried in the form of “%law%thermodynamics%” and we obtain several

Canonic Entities, like wordnet_law_of_thermodynamics,

wordnet_second_law_of_thermodynamics,

wordnet_third_law_of_thermodynamics. The first CE is kept, as the linking word

“of” appears both in the CE and the SE. The second CE is also kept because the first word

“second” (here not a noun), even though before the initial noun “law”, appears both in the

Chapter VI - A knowledge-based approach for document classification Page | 125

CE and the text before the SE, matching exactly. The third CE is discarded because the

word “third” does not appear in the words in the text before the SE. As there is at least one

valid CE, the String Entity will now encompass both nouns, and it will be formed by two

nouns linked by a preposition “law of thermodynamics”.

If a multi-word String Entity is found, then the valid CE list is kept as probable Canonic

Entities that each could represent the SE. However, because of the way YAGO is

structured, (common words are linked in a tree structure – the WordNet hypernym tree), we

keep not only the initial list of CEs, but also each of these CEs’ direct hypernyms.

Example: For the remaining CEs: wordnet_law_of_thermodynamics,

wordnet_second_law_of_thermodynamics we determine their hypernyms. For

wordnet_law_of_thermodynamics the direct hypernym is wordnet_law (a certain

wordnet_law from the seven possible CEs wordnet_law (seven senses of the word law,

each having the same word/name but different ids to differentiate them – not printed here

because the actual ids are irrelevant for this example), which we keep). For

wordnet_second_law_of_thermodynamics the direct hypernym in this case is

actually wordnet_law_of_thermodynamics, which is already added.

This heuristic ensures a larger coverage for the purposes of this system, even if for this

sentence we have actually found the actual, most specific Canonic Entity.

For single-word String Entities the treatment is a bit different. Here, we keep any Canonic

Entity that contains the word itself.

Example: For String Entity “engine”, both classes wordnet_automobile_engine and

wordnet_engine are accepted, even though wordnet_automobile_engine is more

specific than simply wordnet_engine.

After this step, all String Entities, both named and common, multi-word or single-word will

have associated a set of possible Canonic Entities that could represent them.

As String Entities are identified and processed in sequence, a master frequency array list is

kept, recording the frequency of identified String Entities.

One assumption that is being made in this module is that if a String Entity is identified and

counted, then if another identical word-by-word String Entity is found, it is automatically

considered “processed” and the frequency of the first String Entity is increased by one. The

assumption is that a String Entity will always refer to the same thing in the current analyzed

document.

This output in the form of a list of String Entities with their frequency and associated

Canonic Entities is further fed to the Analysis Module.

Chapter VI - A knowledge-based approach for document classification Page | 126

VI.3.3. Analysis Module

This second module takes as input the list of String Entities with their associated classes

and as output it assigns a score to every topic concept (but does not score the topics holding

the topic concepts – a task for the Evaluator module).

First, the ontology graph on which to calculate the scores is created. Every Canonic Entity

associated to every String Entity contributes to this ontology. Given we use YAGO as the

knowledge source, the graph we are creating is actually a fragment of YAGO itself.

Starting from every Canonic Entity a depth-first search is performed in YAGO, and all

encountered entities and relations up to a depth of 2 are added to the new ontology graph (if

they are allowed to be added as we allow only certain relevant relation types).

At this point, the topic list contains topics that have a score of zero, and all of the topic

concepts themselves have a score of zero. While the score of a topic (the final score) is

determined in the following module, the scores of the topic concepts (on which the

document-topic assignation will be made) are obtained in this module.

The score assignation for topic concepts is done in the following manner: from every

Canonic Entity assigned to every String Entity a breadth-first search is performed on the

created ontology. If during the search, the visited entity is actually an entity in a topic

concept, then the topic concept’s score is increased accordingly. The formula by which the

value of this increase is calculated is:

�,&&?�253 = 	 &27�(1 + �536,-)
2��� ∗ �536,- (41)

where dce is the distance in the search from the originating Canonic Entity, and freqSE is the

frequency of the String Entity to which the originating Canonic Entity belongs. This is a

distance based score. The score is multiplied by the logarithm of the frequency of the String

Entity processed to dampen the influence of the same String Entity repeated several times,

while the division by the frequency of the SE directly is to add to the full score only the

increment of the logarithm of the frequency corresponding to this particular instance of SE.

If a SE is encountered 10 times (for example), then each time it is analyzed it will add the

tenth part of its total value of log
2
(1+10) to a certain topic. The need to add several times a

small increment instead of adding the entire value a single time and then ignoring duplicate

SEs will be explained later on.

The breadth-first search is limited at a depth of three. Paths longer than three have an

almost zero information value and are ignored.

Two aspects need mentioning so far. The first aspect is to show how the problem of Word

Sense Disambiguation is handled, or better said, partially avoided by making some

Chapter VI - A knowledge-based approach for document classification Page | 127

compromises, and second, the influence of context in determining the scores (or so far, the

lack of influence).

To exemplify, let’s consider we have the common String Entity “artillery”, for which we

have a number of possible Canonic Entities:

String Entity “artillery”

Associated Canonic Entities:

 Canonic Entity #1: wordnet_artillery_102746365

 Canonic Entity #2: wordnet_artillery_108389297

 Canonic Entity #3: wordnet_artillery_plant_112395289

 Canonic Entity #4: wordnet_artillery_shell_102746595

 Canonic Entity #5: wordnet_artillery_fire_100994449

As can be observed, for String Entity “artillery” YAGO knows two different artillery

entities (#1 & #2, having the same name but different trailing IDs meaning different senses

of the same word), along with three other possible representative entities. So, this far, the

system does not know whether the word “artillery” means either a plant, a shell, artillery

fire, or which of the two senses of artillery is the correct one (if any). Because of the fact

that the topic list was created manually, and each topic has associated topic concepts that

have “disambiguated” entities (meaning the topic concepts are described by the correct

YAGO entities), starting a breadth-first search from each of the five Canonic Entities will

yield the following:

Canonic Entity: wordnet_artillery_102746365

 No matches;

Canonic Entity: wordnet_artillery_108389297

 Match 0.1725 e: wordnet_army_108191230 for Topic Concept “military”

 For Topic “47 Russian Intervention in Chechnya”

 For Topic “48 Peace-Keeping Forces in Bosnia”

 For Topic “66 Russian Withdrawal from Latvia”

Canonic Entity: wordnet_artillery_plant_112395289

 No matches;

Canonic Entity: wordnet_artillery_shell_102746595

 No matches;

Canonic Entity: wordnet_artillery_fire_100994449

 No matches;

The BF search from wordnet_artillery_102746365 is performed up to the maximum

distance of three, but no entity in any topic concept of any topic is found. This yields the

“No matches” message. Only the second sense of the word “artillery” finds at a depth of 2

the topic concept “military” that has been defined for more than one topic. This example

shows both aspects.

The first sense of “artillery” wordnet_artillery_102746365 does not match any topic

concept, meaning that sense is never used, as opposed to

Chapter VI - A knowledge-based approach for document classification Page | 128

wordnet_artillery_108389297 who actually contributes to three topics. This shows

that because the topic concepts contain the correct, ‘disambiguated’ entities (and only those

entities), then even if in this document processing phase we do not perform any

disambiguation and keep all possible senses, only the correct sense will contribute to a

topic. However, this does not remove the possibility that the word was used in the first

sense of the word and not in the second, so it does introduce some false-positive results, but

we estimate a much lower number if we just used direct word matching without regard to

senses.

On an implementation note, the fact that for example the first sense does not reach any

topic concept entity while the second sense does, is because that the WordNet hypernym

tree is actually a tree with clearly separated senses, so for a BF search started from the first

sense to arrive at the wordnet_army_108191230 entity belonging to topic concept

“military” it would have to climb almost to the top of the tree and then back down, a path of

very long length. To a lesser degree this happens to named Canonic Entities, as different

CEs describing a SE will usually be linked by different entities in different parts of the

ontology graph (below the WordNet tree stands the majority of the ontology in the form of

a graph).

The second aspect needing discussion is the fact that, as seen in the example, entity

wordnet_artillery_108389297 contributes to three topics. While this is normal, as

topic concept “military” is common to more than one topic, to attribute the same score to

topic concepts belonging to different topics might not prove to give correct results. The

following example will focus on this specific aspect:

Consider the sentence: “There are suspicions that apples treated with … might lead to an

increased risk of developing a condition similar to …“. Among the String Entities identified

there is SE “apples” and SE “condition”. Consider that during our processing of the

sentence we have reached SE “condition” and, following the algorithm presented above, we

start the BF search in the ontology from the its possible Canonic Entities. The BF search

from a CE of SE “condition” has encountered the CE wordnet_illness. In the WordNet

hypernym tree wordnet_condition is a direct hyponym of wordnet_illness. To

make the example easier to read and to keep track of, we drop the ids following each entity

as we consider that each entity is the correct one (for example, out of the possible 8 senses /

8 CEs of SE “condition” we chose the correct one, meaning, as reported by WordNet: (n)

condition (an illness, disease, or other medical problem) "a heart condition"; "a skin

condition").

At this point the BF search was completed, and the wordnet_illness entity belonging to

two different topics was reached: topic #71 “Vegetables, fruit and cancer” and topic #53

“Genes and diseases”. As per the algorithm described above, both topics having the topic

concept “disease” containing, among others, entity wordnet_illness, should have a

similar score increase.

Chapter VI - A knowledge-based approach for document classification Page | 129

However, for humans the context allows to discriminate to which of the topics the word

“condition” should contribute more. It is relatively easy, even from the fragmented

sentence, to determine that “condition” is probably more relevant to topic #71 than #53. A

simple clue might be that “apples” are fruits (topic #71), and the rest of the words do not

imply anything related to genes (for topic #53).

We aim to follow this simple logic to discriminate between the different topics when

considering a topic concept belonging to all the topics involved.

The algorithm is the following: for a String Entity that is currently under analysis, we

define a window of q SEs to analyze, before and after the current SE. We heuristically

define q = 5, as we observed good results given our test documents, but it can take any

other value. However, SEs in this window must be in the same sentence as the current SE or

at most in the previous or following sentence.

In our example, for simplicity, consider that in the window of q SEs we have found only SE

“apples”. At this point we ask if maybe “apples” is a clue that might differentiate between

topics for the currently analyzed SE “condition”. So, we perform a BF search to see if

“apples” might contribute either to topic #71 and/or #53. From an implementation point of

view, because SE “apples” was found before SE “condition”, the BF was already performed

and the results cached, so performance-wise the BF is not repeated, its cached results are

directly used instead. Actually, in the system’s implementation a BF is performed for every

CE of every SE keeping the results into memory, then taking each SE in sequence to

analyze its impact.

We determine that SE “apples” has a link to topic concept “fruit” of topic #71 “Vegetables,

fruit and cancer” by the conceptual link of depth 2 in the ontology wordnet_apple

subClassOf (�) wordnet_pome subClassOf (�) wordnet_fruit, where

wordnet_fruit is an entity in topic concept “fruit” with weight 1.0. However “apples”

does not have any link to topic #53.

So, at this point, we know that SE “condition” should contribute to both topics #71 and #53

(reaching topic concept “disease”, present in both topics), but knowing that SE “apples” has

a link to topic #71 allows us to make the assumption that the scores assigned should not be

equal, but that topic #71’s topic concept “disease” should receive a higher score than topic

#53’s topic concept “disease”. As such, topic #71 will receive the full score defined earlier,

while #53 will receive a smaller score. It should be noted that when saying topic score, for

this module we do not assign scores to topics but to the topic concepts of each topic. The

topic scores are calculated in the final module based on the scores of their topic concepts.

In a more complex scenario, there might be cases where a SE can contribute to several

topics (reaching common topic concepts like “death”, “money”, “government”, “disease”,

etc), with some of the neighboring SEs analyzed in the q window supporting some of these

topics, and some other SEs pointing to other of the identified topics. To solve this issue we

Chapter VI - A knowledge-based approach for document classification Page | 130

simply count the number of “supporters”. So, given a number of n topics that the currently

analyzed SE contributes to, for each of these topics we assign a temporary supporter count

variable. For every Canonic Entity of every String Entity in the q windows, if during the BF

for that CE an entity is found in one of the topic concepts belonging to one of the n topics,

we increase that topic’s supporter count by one.

With this strategy we can count how many supporters each topic has, and we can actually

sort the topics descending according to these values. On the now sorted n topics a score

assigning strategy can be applied, so that similar topic concepts belonging to different

topics can take different scores.

Given a number of n topics, each having a certain supporter count, we assign scores as

follows: for the top scoring topics (because there might be topics with equal supporter

count) we assign the full score as defined previously; for the second set of highest scoring

topics we assign only half of the full score; for the third set of highest scoring topics half of

the half of the full score, and so on.

'2���?�253 =
�,&&?�253

2�01��#0����0���
 (42)

where topicScore is the score assigned to a certain topic (out of the n possible topics),

fullScore is the score calculated by the formula defined previously, and topicPosition is the

position of the topic in the sorted topic list. More topics can share the same position if they

have the same number of supporters.

Example: if we consider that a String Entity has found 5 topics to which it should contribute

(reaching a common topic concept present in all 5 topics, a likely scenario as some general

topic concepts are often shared between topics), and after analysis of the window of q SEs

surrounding the current SE, it has found a variable number of topic supporters for each

topic. The scores will be assigned as follows:

Table 6. Example table showing the score percentage assigned to each topic based on its supporter

count

Topic # Supporter count Score assigned (% of fullScore)

#1 0 25%

#2 3 100%

#3 1 50%

#4 1 50%

#5 3 100%

Using this strategy, the topic concepts of topics #2 and #5 will receive full score, topic

concepts of topics #3 and #4 will receive half while the topic concept belonging to topic #1

Chapter VI - A knowledge-based approach for document classification Page | 131

will receive a quarter of the full score, even if we are talking about the same topic concept

for each of the five topics.

A short review of this module: First, the ontology on which the analysis will be performed

is created by applying a limited depth Breadth First search on the YAGO ontology starting

from every Canonic Entity belonging to every String Entity. After the ontology is created,

each String Entity is analyzed in order of appearance. The topic concepts of individual

topics it contributes to are determined based on a BF search on the created ontology. If

during the search an entity is encountered that belongs to a topic concept of a topic, that

topic concept is added to the list of topic concepts that should have their score increased. A

list of n topics is thus created. To discriminate between the same topic concept belonging to

different topics, a strategy is employed: first, a window of q String Entities in the text

document that appear before and after the current SE are analyzed. In the same fashion, a

BF search starting from each of their individual Canonic Entities is performed to see to

which (if any) of the n topics it can reach. If a topic is reached (meaning one of its topic

concepts), then the topic has its “supporter count” variable increased. After all the BF

searches are performed, the topics are sorted descending by the supporter count variable.

The topics that have the highest single value of supporters award their topic concept the full

score. Then, topics with the next highest supporter count award half the score, and so on,

halving the score on each lower value of supporter count. Using this method, each String

Entity will be analyzed sequentially and it will contribute (if possible) to one or more of

topics by increasing the score of their topic concepts.

After all the SEs are analyzed, the topic list will contain topics that have non-zero scores to

some of their topic concepts.

Example: In the example below, a document was analyzed and the score composition of

topic concept “food” from topic #41 “Pesticides in Baby Food” is shown, as each matching

String Entity adds a small increase to the final score of 8.5574:

concept [food/1.0] 8.5574: wordnet_food_107555863/1.0:8.5574

 >> Add 1.0*3.76=3.76 to 3.76 from wordnet_food_107555863/42

 >> Add 0.25*0.69=0.1725 to 3.9324 from wordnet_game_107650449/1

 >> Add 0.5*2.89=1.445 to 5.3774 from wordnet_meat_107649854/17

 >> Add 0.5*1.1=0.55 to 5.9274 from wordnet_fish_107775375/2

 >> Add 0.5*0.69=0.345 to 6.2724 from wordnet_cheese_107850329/1

 >> Add 0.5*1.95=0.975 to 7.2474 from wordnet_seafood_107776866/6

 >> Add 0.25*2.48=0.62 to 7.8674 from wordnet_shellfish_107783210/11

 >> Add 0.25*0.69=0.1725 to 8.04 from wordnet_beef_107663592/1

 >> Add 0.25*0.69=0.1725 to 8.2124 from wordnet_delicatessen_107594406/1

 >> Add 0.25*0.69=0.1725 to 8.384 from wordnet_vegetable_107707451/1

 >> Add 0.25*0.69=0.1725 to 8.5574 from wordnet_pork_107668702/1

It should be noted that in the examples above we give only WordNet classes (e.g. class

wordnet_beef_107663592) from YAGO because the relations between them are easier

Chapter VI - A knowledge-based approach for document classification Page | 132

to understand. However, YAGO’s imported WordNet hierarchy contains only around

65.000 classes from the more than 2 million entities known. Named entities contribute just

as much as (and in some cases even more than) the common entities that our system uses.

VI.3.4. Evaluator Module

The evaluator module takes as input the topic list with their scores, and evaluates them. The

output is a sorted list of probable topics for the currently analyzed document.

Given we already have for each topic the scores of its topic concepts, one method is to

simply add the scores of the topic concepts and call this sum as the final score of the topic,

then just sort the topics using this value. However, because of the way the system works,

there are documents that have very many common words that contribute more to other

topics and not the correct one. This is partly because of the structure of YAGO and

WordNet, partly because of the problem of word sense disambiguation that is rather slightly

circumvented and not solved, partly because of the way the topics were defined.

To allow a degree of variation to an otherwise strict method of scoring, we assume the

following strategy:

1. We calculate the general score for each topic by adding the scores of its topic

concepts.

2. We evaluate the first 4 highest scoring topics, and we calculate the average of the

score differences between each topic, which will call the error margin.

3. If the score of the best topic is greater that the score of the second topic plus the

error margin, we assume that the first topic is the correct topic. If the second topic is

within the error margin of the first, we count for each topic the number of topic

concepts that have a score greater than 0. The topic we believe is correct is the topic

that has the best coverage. The coverage of a topic is the percent of non-zero topic

concepts.

This heuristic was introduced because sometimes the correct topic is the second or third

best scoring, with a score almost equal to the top scoring topic. We allow for the second

scoring topic to precede the first if a larger percent of the topic’s topic concepts are reached

(non-zero) based on the assumption that a topic that characterizes a document should have

most if not all of the words in the topic at least one time in the document.

Example: Given two topics that score almost equal, with topic #2 scoring slightly lower but

being the correct choice, if topic #1 has 4 out of 5 concepts greater than zero, and topic #2

has 4 out of 4 topic concepts greater than zero, then we choose topic #2, because topic #1

has only 4/5 = 80% coverage while topic #2 has 4/4 = 100% topic concept coverage).

Chapter VI - A knowledge-based approach for document classification Page | 133

VI.4. Evaluation

Before evaluating the results, a quick description of the data collection on which we tested

is needed. We used the LA94 TREC Information-Retrieval Text Research Collection59,

representing a sampling of news articles published by the Los Angeles Times in 1994. The

collection includes 828 such articles, which are classified over 50 topics. The articles are

small to medium-sized news (200 to 1500 words) on different topics such as entertainment,

movies, television, music, politics, business, health, technology, etc.

In order to compare our results against a standard method of text classification used today,

we have implemented a SVM based system for text classification. The system is built in

Java and uses core functionality from WEKA [9]. Each document is parsed, and a feature

vector is extracted. The vector is further elaborated upon, eliminating stop-words, using

lowercase tokens, setting a minimum term frequency for allowed terms, pruning

periodically, using a stemmer, and finally applying a TF*IDF transform. The SVM is then

trained on the document collection, and evaluated using a random-seed, 10-fold cross

validation. We have tried to build the evaluator system as best as possible using the latest

feature vector techniques and the best classifier for this job, the SVM.

Table 7. Comparison between the proposed system and a standard SVM state-of-the-art method

System
Performance (correctly classified

documents)

Proposed KB-approach ontology-centric system 570 / 828 (68.84%)

SVM comparison system 661 / 828 (79.83%)

The SVM comparison system at this moment performs better, by a margin of almost 11%.

However, our proposed system achieves a respectable performance of 68.84% using only

the ontology as a source of information. We designed this system as proof-of-concept, to

test the possibility of using ontologies as the core of a text classification system, and to see

the performance degree of such an approach.

While the system proves effective even at this stage, we believe that its performance can be

greatly improved. During the implementation, we have noted a series of improvements that

should significantly boost performance:

The first and most important issue affecting performance is the topic list creation.

Depending on the description of each topic (meaning the topic concepts of each topic),

performance is greatly affected.

59 LA94 news articles collection, http://trec.nist.gov/data/docs_eng.html

Chapter VI - A knowledge-based approach for document classification Page | 134

Table 8. A short comparison between overall system performance grouped by topic, before and after

topic tweaking, for 5 out of the 50 total topics

Topic

Topic

of

docs

Performance

bef. tweaking

Performance after

tweaking
Difference

#50 Revolt_in_Chiapas 105 98 / 105 (93.3%) 99 / 105 (94.28%) + 0.98%

#43 El_Nino_and_the_Weather 11 4 / 11 (36.36%) 6 / 11 (54.54%) + 18.18%

#80 Hunger_Strikes 56 9 / 56 (16.07%) 18 / 32 (34.61%) + 18.54%

#70 Death_of_Kim_Il_Sung 33 28 / 33 (84.84%) 22 / 33(66.66%) - 18.18%

#58 Euthanasia 49 14 / 49 (28.57%) 31 / 49 (63.26%) + 34.69%

This table shows some of the performance gains after manually tweaking some of the

topic’s concepts. For example, while adding context to topic #50, performance is very

slightly improved by almost 1%, while for topic #80 the correct topic classification rate is

doubled to 34%. By concept tweaking we mean editing individual topic concepts. For

example, for topic #80 we had the initial topic concepts of ‘hunger’ and ‘strike’. After

adding context, meaning topic concepts “government”, “demonstration” and “cause” (each

with a slightly lower weight than the initial two topic concepts), the detection rate greatly

increased.

However, after also tweaking topic #58, the performance negatively affected topic #70’s

recognition rate. This is due to the adding to topic #58 (and others) of the concept ‘kill’

which was already present in more topics, including topic #70. This means that the word

“kill” will now score for topic #58 also. The multiplicity of the same topic concept in many

topics, while unavoidable, does negatively impact performance. It should also be noted

after tweaking, each topic has grown from 2-3 topic concepts to an average of 4 topic

concepts, few topics having more than 6 topic concepts.

Another valuable insight from this before/after comparison is related to the ontology

information content. We have found out that there are sometimes lacks in information in the

ontology, while in other places there is an abundance of it. For example, we had trouble

finding YAGO classes to describe the concepts for topic #76 “Solar Energy”: while we

have wordnet_energy_111452218 for the “energy” concept, for the “solar” concept

there is no simple, general wordnet_solar_# class, just classes like

wordnet_solar_cell_104257986, wordnet_solar_dish_104258138 or

wordnet_solar_house_104258438. While YAGO (and WordNet) contains

wordnet_solar_energy_111509697 (which we have also used to describe the topic),

because it is multi-word, for it to positively match we need to have the entire “solar energy”

expression in the text. This means that in the documents where the word “solar” is found, if

it is not followed by “cell”, “dish”, “house” or “energy”, it will not be counted. This issue

accounts for the proposed system’s <15% detection rate for this particular topic.

Chapter VI - A knowledge-based approach for document classification Page | 135

Another topic list related point is that the list needs to be created partially by hand. While

usually this is not desired due to the required human intervention, we argue that the number

of possible topics for any classification is manageable, ranging from a few tens to usually

no more than a few hundreds, a relatively simple task for even one person. For the 50 topics

we had, it took no more than a few hours to initially create the list (while assisted by the

computer, using only topic concepts found in the topic name), and a bit longer for the topic

tweaking (using topic concepts extracted from each topic’s description which is a few

sentence-long summary, also available to us in the LA 94 collection, but not used directly

in the system) which increased overall system performance from an initial 55.79% (462

correctly identified documents out of the total 828) to the current 570 / 828 (68.84%).

Another idea to be implemented in a future revision, is that we could use the ontology as

not only a semantic similarity map, but also use the relations themselves as useful

information. That would mean identifying subject – object entities and then match the verb

that links them to a specific relation in the ontology. This would provide a stronger link

between concepts, and an algorithm could judge whether to take into account certain

entities or not based on the relations between them. However, at present, the task of relation

extraction is an even more difficult problem that text classification. Relation extraction

systems do exist, but are difficult to implement and use, and they require very particular

conditions to run under – thus currently impractical to use.

VI.5. Conclusion

We believe that ontologies, especially general ontologies represent a powerful yet

somewhat underused tool for the text classification problem. The structure of the ontology

itself contains information that can be used in the form of concept closeness, synonymy,

hypernymy, relation types, etc. As time passes, it is inevitable that general ontologies will

become larger and larger, thus providing better results even using the same algorithms.

However, the use of ontologies does impose some limitations and problems. For example,

information density in an ontology varies greatly, meaning some concepts will be defined

in more detail than others, that in turn leading to uneven topic recognition accuracy. This

problem is usually addressed by using domain ontologies. However, for example, for news

articles a domain ontology is mostly useless considering the method we have applied in this

article, where we do not use the ontology as a simple hierarchical taxonomy, but as a

concept semantic similarity map.

We propose a text-classification approach that achieves a good performance rating using

only an ontology as its information source, and graph algorithms with a custom scoring

method. The system uses the links available in the ontology to assign a score to the

Chapter VI - A knowledge-based approach for document classification Page | 136

semantic similarity between concepts. Future work on the subject will include

implementing some of the suggestions in the previous chapter, as well as an attempt to use

a supervised ML algorithm to self-create the topic list’s concepts instead of manually

tweaking them, and evaluate performance between this system’s versions.

Chapter VII - Conclusions Page | 137

VII. Conclusions

The field of Information Extraction (IE) is a relatively young area of research that holds

many possible rewards. Information Extraction means extracting structured information

from unstructured and semi-structured sources by a computer. Making the computer

‘understand’ the data it is processing will yield improvements in many areas, like better

Internet search engines that identify words’ meanings, automatic multimedia annotation

that leads to more accurate information delivery, knowledge discovery from existing

knowledge sources (like predicting events based on entity identification and the

heterogeneous links between them), up to the field of Artificial Intelligence where a

computer that would try to pass the Turing test would first need to understand the question

it is being asked and then to reason a response adapted to the meaning of the question.

One of the main research problems of IE is entity identification and classification, an

essential step in any IE system. This research problem is actually split in two distinct tasks:

Word Sense Disambiguation and Named Entity Recognition.

Word Sense Disambiguation is the task of identifying the senses of words in context. It

usually deals with common nouns (but can target also verbs, adverbs, adjectives, etc). For

example, in the sentence “John is the engine that keeps our business going”, ‘engine’ is not

a mechanical engine or a synonym for locomotive, but refers to something used to achieve

a purpose. Depending on the number of senses considered, WSD can be a coarse-grained

(and easier) task having only a few possible senses per word, or a fine-grained (and thus

more difficult) task having several senses per word, encoding subtler distinctions. The

senses are references in a sense repository, usually a dictionary or a taxonomy (like

WordNet).

Named Entity Recognition is the task of identifying and classifying interesting entities in

context. It usually deals with proper nouns, meaning names of persons, locations,

organizations, etc, but can also target other entities such as dates, numbers and so on. As

with the WSD task, NER can be a coarse-grained task where only a few basic types of

entities are recognized (ex: the standard major three categories: persons, organizations and

locations) or fine-grained (having more categories, for example instead of location, having

city, state and country categories). For example, in the sentence “I drove the new Santa Fe

through Santa Fe” a good NER system might recognize the first “Santa Fe” as an car (in

case of a coarse-grained system, recognize it as a named entity labeled “Other”) and the

second “Santa Fe” as a city (in case of a coarse-grained system, recognize it as a location).

A NER system would use either a flat-list or a taxonomy to store possible entity categories.

Because there are obvious differences between NER and WSD the tasks remain strongly

separated, with only little research in systems having a unitary view over both tasks. A

General Entity Recognition system would try to tag both common and proper nouns with

Chapter VII - Conclusions Page | 138

appropriate labels. Here, the labels would also come from a taxonomy encoding a hierarchy

of classes. For example, for the sentence “Hyundai Accent has a 1.6 liter engine delivering

110 hp.” such a system would tag “Hyundai Accent” as a car, “1.6” as a quantity, “liter” as

a unit of measure (liter), “engine” as an engine (having the sense of mechanical engine),

“110” as a quantity and “hp” as a unit of measure (horse-power). This requires techniques

from both WSD and NER. For example, the identification of entity boundaries is a NER-

specific task (“Hyundai Accent” forms a single entity), while the correct identification of

the fact that “engine” is used with the sense of mechanical engine and not a locomotive or

other is a WSD-specific task.

The thesis presents a system that extends the task of General Named Entity Recognition (as

defined in [104] : to tag every interesting entity – both named or common noun – with a

WordNet sense) to identifying interesting entities and matching them to the most likely

canonic classes in a large, general ontology. For the purposes of the thesis and the system

we have used the YAGO ontology [39], holding among its 2+ million entities and 20+

million links between them all WordNet senses in the form of a hypernym tree. Therefore,

the proposed system first identifies interesting words (defined as String Entities) and then

attempts to assign to each one a class (defined as Canonic Entity) from the YAGO

ontology.

We define the notions of String Entity and Canonic Entity as follows: a String Entity is a

bounded sequence of characters, a single or multi-word token (ex: “chair”, “USA”,

“relativity theory” or “Charles Darwin”), while a Canonic Entity is a class

(entity/individual) from an ontology (ex: wordnet_chair, United_States_of

_America, wordnet_relativity_theory or Charles_Darwin).

For example, for the sentence “The new Hyundai Accent has a 1.6 liter engine that delivers

110 hp” the system identifies “Hyundai Accent” as a multi-word String Entity and assigns

it the YAGO Canonic Entity Hyundai_Accent, “liter” as the WordNet Canonic Entity

(integrated in YAGO) wordnet_liter, “engine” as wordnet_automobile_engine

(and not just the more generic engine Canonic Entity for example) and “hp” as

wordnet_horsepower.

The approach of the system is to try to find for each String Entity the best matching

Canonic Entity (or tagging the String Entity as unknown), taking into consideration the

context of each entity. The approach taken first analyzes each sentence from a NLP point of

view, performing token splitting, Part-of-Speech-Tagging, applying a Named Entity

Recognizer of proper nouns (for indication of the general class of that noun : location /

organization / person / other), obtaining the syntactic and the dependency tree for the

sentence itself. From the dependency tree an influence matrix is created where the values

represent the connection strength between any two String Entities. Next, for each String

Entity the most probable Canonic Entities are found in the ontology (a String Entity can

Chapter VII - Conclusions Page | 139

have anywhere from a few Canonic Entities to more than 1000). Then, a sub-graph is

created starting from every Canonic Entity of every String Entity by exploring the YAGO

ontology and adding relevant neighbors. Based on this directed unweighted sub-graph,

every set of related String Entities (meaning they have a non-zero value in the influence

matrix) is analyzed, creating a smaller directed and weighted graph. This latter graph is

formed by finding limited-distance paths in the initial sub-graph to other Canonic Entities,

weighing the connection strength between them using a distance-based metric and adjusting

the score using values from the influence matrix. Thus, for each set of related String

Entities a k-partite graph is formed. Such a graph has the property that it is divided into k-

partitions in which there are no edges between the vertices belonging to a partition. For the

purposes of the system, a partition represents a String Entity, and the vertices in the

partition are the Canonic Entities associated to that String Entity. On this special graph type

we propose a custom algorithm that finds the best combination of Canonic Entities

respecting the k-partite property – picking at most one Canonic Entity for every String

Entity (partition) in the graph, based on edge scores. The last step of the algorithm is to

merge non-overlapping solutions (several non-overlapping connected components in the k-

partite graph) to provide the highest scoring solution possible.

The approach taken here is based on graph algorithms and ontologies. This unsupervised,

knowledge-rich approach yields interesting results. While the performance figures are not

themselves very high, the problem undertaken is very difficult. Though not comparable, a

task that resembles the General Entity Recognition approach is the Word Sense

Disambiguation - English nouns fine-grained disambiguation task. Here, senses (usually

WordNet senses) are associated to nouns. However, wherein the coarse-grained task there

are no more than 2-3 senses per word, the fine-grained task has no limit, having sometimes

more than 5-8 senses per word. This apparently slight increase in possible senses for a word

has a major impact on disambiguation performance: for coarse grained tasks (few senses

per word) the percent is rather high, reaching 90% [91]. For finer grained tasks (many

senses per word, such as the senses in dictionaries or WordNet for example) the percent

drops in the 60-80% range [94], not to mention that the Inter Annotator Agreement Rate

was under the same circumstances at most 85% showing that even humans have a difficult

time agreeing on word senses. The system we propose has to identify the correct tag (or

corresponding Canonic Entity in the ontology) from not just a few but sometimes hundreds

of possible choices, meaning the search space is much larger, as well as having more

entities to deal with – both named and common.

Also, the thesis presents another system which is based on largely the same tools and

techniques (ontologies and graph algorithms) but differently applied to the problem of text

classification into predefined topics. Currently, this problem is usually solved by machine

learning algorithms like the well-performing Support Vector Machine. While such

supervised algorithms are sound, the problem of input data fed to them is not yet solved.

Chapter VII - Conclusions Page | 140

Depending on the feature vectors created (or other internal features like type of kernels

used), machine learning algorithms provide better or worse results. The problem of

supervised text classification has been studied in depth and while good results have been

achieved, there seems to be a limit on the performance of such machines. New approaches

should be developed and used either by themselves or with current state-of-the-art

approaches in order to improve classification performance. With the system presented in

this work we investigate an alternative approach that tries to leverage the information

contained in large scale, general ontologies and apply it to the problem of text classification

with encouraging results.

In the following paragraphs a short summary of the workings of this knowledge-rich system

is presented:

Before the system is used, there is a phase of semi-manual topic crafting. This task is

performed only once to define the topics in a way the system can understand. Here we

introduce a few notions: as a topic can be defined by a word (ex: “Science” – general topic)

up to several words / a sentence (ex: “Pesticides in baby food” – more specific topic), we

define a topic as being composed of topic concepts. A topic concept is the encoding of a

word/sense from that particular topic. For example in the example “Pesticides in baby

food” we have 3 explicit topic concepts: “pesticides”, “baby” and “food”. Now, because we

are working with an ontology, the topic concepts have to be ‘translated’ to that knowledge

source. As such, each topic concept is itself composed of several weighted ontological

classes. For example, topic concept “baby” can be expressed as the ontology class baby

indicating a human infant (and not another sense of the word) as well as the ontological

class child (in the same sense – a very young human as defined in the ontology). Because

we are working with topic concepts expressing ideas, a certain generality must be

maintained, in the form of synonymy. The classes are weighted to indicate that, for

example, class baby is better suited to topic concept “baby” than class child, but child

should also be allowed in our scenario as an indication of topic concept “baby”.

This topic crafting is performed semi-automatically by one or more persons that add or

remove ontological classes to the topic concepts that form topics. Using this approach we

partially avoid the problem of Word Sense Disambiguation that appears in any NLP

system, as will be explained shortly.

As we designed this system for text topic classification we assume that the topic number is

relatively low (less than 100 topics for example). Even though the semi-manual topic

creation would seem an undesired feature of the system, for our test collection of 50 topics

of 848 Los Angeles Times (from year 1994) news articles, the topic creation phase took a

short time to complete, and the benefits of this small initial topic ‘disambiguation’ would

increase the performance of the system, avoiding many false-positives due to sense

mismatch.

Chapter VII - Conclusions Page | 141

The first working step of the system is text pre-processing, where the standard NLP

treatment is applied. Sentences are split into POS tagged tokens, multi word named entities

and common entities are grouped together into larger String Entities (similar to the previous

GER system proposed in this thesis).

After this step, every String Entity is assigned a number of Canonic Entities (classes from

the ontology that could represent the String Entity). For example, for the String Entity

“baby” extracted from a natural language text, the ontology reports 6 Canonic Entities

(ontological classes) as baby_# (where the number following the word is an identifier to

differentiate between the senses of baby). Because we perform no WSD, each and every

Canonic Entity is kept as a possible representative of that String Entity. This means for our

example that for the String Entity “baby” we keep all 6 senses of baby, including unlikely

senses like “S: (n) baby (a project of personal concern to someone) "this project is his

baby"”.

After assignation of Canonic Entities to String Entities is completed, for each String Entity

we start to sequentially look for classes from any of our topic concepts in the vicinity of

every Canonic Entity for our current String Entity. This means that we perform a custom

depth-first search starting from every Canonic Entity assigned to every String Entity in the

ontology graph. If during the search we encounter a class that has been marked as

belonging to a topic concept, we increase the score of that topic concept using a custom

distance-based function (implementing some of the ideas like direction change penalization

in the WordNet semantic similarity metric of Hirst and St-Onge (1998)).

At this point we are faced with two aspects: first, we keep every sense for every common

String Entity and every individual for every named String Entity. This means that

interpretation and sense errors should be overwhelming. However, due to the ontology’s

structure, it is not the case. Because we manually crafted the topic concepts before running

the system, the limited depth first search initiated from every Canonic Entity from a String

Entity will hit only the correct class of a topic concept. Returning to the “baby” example, if

we initiate a search from each of the 6 senses for baby, only the correct sense of human

infant would reach topic concept “baby” because of its direct link; all the other senses

would have to go up to a top-level class (like root class entity) and then back down, a path

too long and directly discarded. This is why even if we keep all possible Canonic Entities

without discrimination, because of the manual choosing of the correct target class and

because of the ontological paths linking different senses or individuals, we avoid many

false-positive results and thus partially the problem of automatic WSD.

The second aspect needing discussion is how to solve the problem of topic concepts that are

repeated amongst different topics. For example topic concept “military” belongs both to

topics “Peace-keeping forces in Bosnia” and “Insurgency in Middle East” and a word like

“army” would contribute to both topic concepts of both topics. Using context words (both

previous and following words) we search for them if they appear in any of the topics. The

Chapter VII - Conclusions Page | 142

distance from the target word and the frequency count in our limited window allows for

ranking the scores assigned to a topic concept that belongs to multiple topics, thus

differentiating between topics and directly increasing classification performance.

The final step is to heuristically score every topic based on their topic concepts’ scores and

assign the most likely topic to that text document.

As an overview, the system uses a general ontology as a graph in which it calculates custom

distance-based scores between pre-defined topics and the words in text document. Based on

the ranking of these scores the system offers the user a sorted list of topics. The system

shows performance averaging close to the standard supervised classification system

implementing the SVM with TF*IDF approaches, using only distances between classes in

the ontology.

Contributions

In summary, the thesis makes the following contributions:

• An approach to General Entity Recognition using knowledge based methods and

unsupervised algorithms. Based on a large, general ontology, the implemented

system assigns ontological classes to text-extracted entities. Furthermore, it is a

fine-grained system – its search space of ontological classes (that can be assigned to

extracted entities from the text) is very large. For the implemented system the

YAGO ontology was used, having 2+ million entities.

• The GER system has a unified approach based on an ontology seen as a semantic

graph. It treats both named entities (proper nouns) and common nouns equally -

basically it covers both the tasks of Named Entity Recognition (applied to proper

nouns) and Word Sense Disambiguation (applied to common nouns) in a single

pass.

• Varied methods and heuristics to reduce the complexity of IE/NLP problems: most

likely ontological classes assignation heuristics for text entities to minimize future

search space; sparse text entity influence matrix based on dependency trees;

splitting of text entities into separate process groups based on influence matrix to

vastly reduce the processing effort needed; algorithm designed to handle process

groups in parallel (one process group per thread/core).

• A well-performing graph algorithm tuned to the problem of determining the best

scoring sets of vertices in a weighted undirected k-partite graph. It is abstracted and

can be applied to any problem that can be reduced to these specifications. It is

shown to perform when applied to the General Entity Recognition task with dense

graphs.

Chapter VII - Conclusions Page | 143

• An unsupervised system designed for text classification using general ontologies.

Using partially annotator-corrected topics, such a system can obtain a relatively

close score to the current state-of-the-art supervised classification standard (SVM

machines), opening a new possible approach to this problem.
• A context-aware intelligent scoring method based on a custom semantic similarity

distance function. This allows differentiated scores to be assigned to similar topic

concepts that belong to different topics and thus increases topic classification

accuracy.
• A topic scoring method implementing the concept of topic coverage. This method is

applied only after the scores of topic concepts have been assigned. It allows topics

with higher topic concept coverage but with lower scores (the lower scores have to

be within the error-margin of the best score) to take precedence in the final sorted

topic list.
• A survey of current tools, techniques and approaches in the domains of NLP

processing, Word Sense Disambiguation and Named Entity Recognition.
• Interesting insights, benefits and limitations in the use of large-scale, general

ontologies applied to the Information Extraction related problems treated in this

thesis as shown by the two implemented systems. These less-investigated aspects

are discussed and conclusions are offered.

Chapter VIII - References Page | 144

VIII. References

[1] Ceri, S., & Brambilla, M. (2010). Search for Knowledge. In Search Computing, LNCS 5950.

Berlin.

[2] Rijsbergen, C. v., Robertson, S., & Porter, M. (1980). New models in probabilistic information

retrieval. In British Library Research and Development Report no. 5587. London: British Library.

[3] Voutilainen, A. (1995). A syntax-based part of speech analyser. Seventh Conference of the

European Chapter of the Association for Computational Linguistics, (pp. 157-164). Dublin.

[4] Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging. Computational Linguistics , 21, 543-565.

[5] Brants, T. (2000). TnT - A Statistical Part-Of-Speech Tagger.

[6] Brill, E. (1995). Unsupervised learning of disambiguation rules for part of speech tagging. Third

Workshop on Very Large Corpora, (pp. 1-13).

[7] Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. ACL.

[8] Mitchell, T. M. (1997). Machine Learning.

[9] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA Data Mining Software: An Update. SIGKDD Explorations , 11 (1).

[10] Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications.

Proceedings of the IEEE, 77, 2.

[11] Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic

models for segmenting and labeling sequence data. International Conference on Machine Learning.

[12] Sutton, C., & McCallum, A. (2007). An Introduction to Conditional Random Fields for

Relational Learning. In Introduction to statistical relational learning. MIT Press.

[13] Brill, E. (2003). Processing Natural Language without Natural Language Processing. In

Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

[14] Gaifman, H. (1965). Gaifman, Haim. In Information and Control (pp. 304-307).

[15] Covington, M. A. (2000). A Fundamental Algorithm for Dependency Parsing. 39th Annual

ACM Southeast Conference, (pp. 95-102).

[16] Miyao, Y., Sagae, K., & Tsujii, J. (2007). Towards framework-independent evaluation of deep

linguistic parsers. In Grammar Engineering across Frameworks (pp. 238-258).

[17] Pereira, R. M. (2006). Online learning of approximate dependency parsing algorithms. EACL.

Chapter VIII - References Page | 145

[18] Charniak, E. (2000). A maximum-entropy-inspired parser. NAACL.

[19] Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best parsing and MaxEnt discriminative

reranking. ACL.

[20] Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. HLT-NAACL

2007.

[21] Sagae, K., Miyao, Y., Matsuzaki, T., & Tsujii, J. (2008). Challenges in mapping of syntactic

representations for framework-independent parser evaluation. Workshop on Automated Syntatic

Annotations for Interoperable Language Resources.

[22] Miyao, Y., & Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing.

Computational Linguistics.

[23] Kim, D., Ohta, T., Teteisi, Y., & Tsujii, J. (2003). GENIA corpus — a semantically annotated

corpus for bio-texmining. In Bioinformatics.

[24] Soon, W., Ng, H., & Lim, D. (2001). A machine learning approach to coreference resolution of

noun phrases. In Computational Linguistics (pp. 521-540).

[25] Yang, X., Zhou, G., Su, J., & Tan, C. L. (2004). Improving noun phrase coreference resolution

by matching strings. Proc. of the 1st Int’l Joint Conference on Natural Language Processing.

Hainan.

[26] Mccallum, A., & Wellner, B. (2004). Conditional models of identity uncertainty with

application to noun coreference. NIPS-17. Vancouver.

[27] Cardie, C., & Wagstaff, K. (1999). Noun phrase coreference as clustering. Joint SIGDAT

Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, (pp.

82-89). Maryland.

[28] Gainaru, A., Dumitrescu, S. D., & Trausan-Matu, S. (2010). NLP Toolbox. COMM2010 -

IEEE , 22-26.

[29] Zhou, G., & Su, J. (2004). A High-Performance Coreference Resolution System using a

Constraint-based Multi-Agent Strategy. 20th International Conference on Computational

Linguistics (COLING-2004), (pp. 522-528). Geneva.

[30] Bean, D., & Riloff, E. (2004). Unsupervised Learning of Contextual Role Knowledge for

Coreference Resolution. Human Language Technology Conference / North American Chapter of

the Association for Computational Linguistics Annual Meeting (HLT/NAACL-04), (pp. 297-304).

Boston.

[31] Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated

Corpus of English: The Penn Treebank. COMPUTATIONAL LINGUISTICS , 19 (2), 313-330.

[32] Noy, N., & McGuinness, D. (2001). Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford Knowledge Systems Laboratory.

Chapter VIII - References Page | 146

[33] Dumitrescu, S. D., Smeureanu, A., Diosteanu, A., & Cotfas, L. (2010). Adaptable Network

Management System Using GIS and network ontology. 9th RoEduNet IEEE International

Conference, (pp. 310-315).

[34] DIOSTEANU, A., COTFAS, L., SMEUREANU, A., & DUMITRESCU, S. D. (2010). Multi-

Agents and GIS Framework for Collaborative Supply Chain Management Application. 9th

RoEduNet IEEE International Conference, (pp. 157-162). Sibiu.

[35] Miller, G. A., Beckwith, R., Fellbaum, C. D., Gross, D., & Miller, K. (1990). WordNet: An

online lexical database. 235-244.

[36] Navigli, R. (2006). Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation

Performance. 44th Annual Meeting of the Association for Computational Linguistics joint with the

21st International Conference on Computational Linguistics, (pp. 105-112). Sydney.

[37] Snow., R., S., P., Jurafsky., D., & Ng, A. Y. (2007). Learning to Merge Word Senses. Joint

Conference on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), (pp. 1005-1014). Prague.

[38] Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.

14th International Joint Conference on Artificial Intelligence. Montreal.

[39] Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago - A Core of Semantic Knowledge.

16th international World Wide Web conference (WWW 2007).

[40] Pasca, M., Lin, D., Bigham, J., Lifchits, A., & Jain., A. (2006). Names and similarities on the

web: Fact extraction in the fast lane. Proceedings of the Association for Computational Linguistics.

[41] Suchanek, F. M., Kasneci, G., & Weikum, G. (2008). YAGO: A large ontology from

Wikipedia and WordNet.

[42] Suchanek, F. M., Sozio, M., & Weikum, G. SOFIE: A Self-Organizing Framework for

Information Extraction. 18th International World Wide Web conference. 2009.

[43] Banko, M. (2009). Open Information Extraction for the Web. PHD Thesis, University of

Washington, Washington.

[44] Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., & Etzioni, O. (2007). Open

information extraction from the web. Proceedings of IJCAI.

[45] Ramshaw, L. A., & Marcus, M. P. (1995). Text chunking using transformation based learning.

In CoRR.

[46] Yates, A., & Etzioni, O. (2007). Unsupervised resolution of objects and relations on the web.

Proceedings of the Conference on Human Language Technologies / North American Chapter of the

Association for Computational Linguistics.

[47] Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing. PHD

Thesis, University of Pennsylvania, Pennsylvania.

Chapter VIII - References Page | 147

[48] Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters.

OSDI.

[49] Gale, W. A., Church, K. W., & Yarowsky, D. (1993). A method for disambiguating word

senses in a large corpus. (26).

[50] Ide, N., & Véronis, J. (1998). Word Sense Disambiguation: The State of the Art. 24.

[51] Wilks, Y., & Stevenson., M. (1998). Word Sense Disambiguation using Optimised

Combinations of Knowledge Sources. COLING-ACL'98. Montreal, Canada.

[52] Kelly, E. F., & Stone, P. J. (1975). Computer recognition of English word senses. North-

Holland Pub.

[53] E., B. (1988). An experiment in computational discrimination of English word senses. In IBM

J. Res. Devel (Vol. 32, pp. 185–194).

[54] Rivest, R. L. (1987). Learning decision lists. In Machine Learning 2 (Vol. 3, pp. 229–246).

[55] Quinlan, J. R. (1993). Programs for Machine Learning. San Francisco: Morgan Kaufmann.

[56] Bramer, M. (2007). Principles of Data Mining . Springer London.

[57] Deng, H., Runger, G., & Tuv, E. (2011). Bias of importance measures for multi-valued

attributes and solutions. 21st International Conference on Artificial Neural Networks.

[58] McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. In Bull. Math. Biophys. (Vol. 5, pp. 115-133).

[59] Veronis, J., & Ide, N. (1990). Word sense disambiguation with very large neural networks

extracted from machine readable dictionaries. 13th International Conference on Computational

Linguistics, (pp. 389–394). Helsinki, Finland.

[60] Tsatsaronis, G., Vazirgiannis, M., & Androutsopoulos, I. (2007). Word sense disambiguation

with spreading activation networks generated from thesauri. International Joint Conference on

Artificial Intelligence, (pp. 1725–1730). Hyderabad, India.

[61] Mooney, R. J. (1996). Comparative experiments on disambiguating word senses: An

illustration of the role of bias in machine learning. Conference on Empirical Methods in Natural

Language Processing, (pp. 82–91).

[62] Towell, G., & Voorhees, E. (1998). Disambiguating highly ambiguous words. Computational

Linguistics , 125-145.

[63] Hoste, V., Hendrick, I., Daelemans, W., & Van Den Bosch, A. (2002). Parameter optimization

for machine learning of word sense disambiguation. J. Nat. Lang. Eng. , 8 (4), 311-325.

[64] Decadt, B., Hoste, V., Daelemans, W., & Bosch, V. D. (2004). GAMBL, genetic algorithm

optimization of memory-based WSD. 3rd International Workshop on the Evaluation of Systems for

the Semantic Analysis of Text (Senseval-3), (pp. 108–112). Barcelona, Spain.

Chapter VIII - References Page | 148

[65] Zhang, H. (2004). The Optimality of Naive Bayes. FLAIRS.

[66] Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning

algorithms. 23rd international conference on Machine learning.

[67] Bruce, R., & Weibe, J. (1999). Decomposable modeling in natural language processing.

Computational Linguistics , 2 (25), 195–207.

[68] Ng, T. H. (1997). Getting serious about word sense disambiguation. ACL SIGLEX Workshop

on Tagging Text with Lexical Semantics: Why, What, and How?, (pp. 1-7). Washington D.C.

[69] Murata, M., Utiyama, M., Uchimoto, K., Ma, Q., & Isahara, H. (2001). Japanese word sense

disambiguation using the simple Bayes and support vector machine methods. 2nd International

Workshop on Evaluating Word Sense Disambiguation Systems (SENSEVAL-2), (pp. 135–138).

Toulouse, France.

[70] Keok, L. Y., & Ng, H. T. (2002). An empirical evaluation of knowledge sources and learning

algorithms for word sense disambiguation. Conference on Empirical Methods in Natural Language

Processing, (pp. 41–48). Philadelphia, PA.

[71] Lin, D. (1998). Automatic retrieval and clustering of similar words. 17th International

Conference on Computational linguistics, (pp. 768–774). Montreal, P.Q., Canada.

[72] Pedersen, T., & Bruce, R. (1997). Distinguishing word senses in untagged text. Conference on

Empirical Methods in Natural Language Processing, (pp. 197-207). Providence, RI.

[73] Savova, G., Pedersen, T., Purandare, A., & Kulkarni, A. (2005). Resolving ambiguities in

biomedical text with unsupervised clustering approaches. Minneapolis, MN: UMSI.

[74] Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and

Technology , 38 (1), 188-230.

[75] Purandare, A., & Pedersen, T. (2004). Improving word sense discrimination with gloss

augmented feature vectors. Workshop on Lexical Resources for the Web and Word Sense

Disambiguation, (pp. 123–130). Puebla, Mexico.

[76] Widdows, D., & Dorow, B. (2002). A graph model for unsupervised lexical acquisition.

International Conference on Computational Linguistics, (pp. 1-7). Taipei, Taiwan.

[77] Veronis, J. (2004). Hyperlex: Lexical cartography for information retrieval. Comput. Speech

Lang. , 18 (3), 223–252.

[78] Brin, S., & Page, M. (1998). Anatomy of a large-scale hypertextual Web search engine.

Conference on World Wide Web, (pp. 107-117). Brisbane, Australia.

[79] Agirre, E., & Stevenson, M. (2006). Knowledge sources for WSD. Word Sense

Disambiguation: Algorithms and Applications , 217–251.

[80] Klapaftis, I. P., & M., S. (2007). UOY: A Hypergraph Model For Word Sense Induction &

Disambiguation. Workshop on Semantic Evaluations (SemEval) .

Chapter VIII - References Page | 149

[81] Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: How to

tell a pine cone from an ice cream cone. 5th SIGDOC, (pp. 24-26). New York.

[82] Vasilescu, F., Langlais, P., & Lapalme, G. (2004). Evaluating variants of the Lesk approach for

disambiguating words. Conference on Language Resources and Evaluation, (pp. 633–636). Lisbon,

Portugal.

[83] Banerjee, S., & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation

using WordNet. Conference on Computational Linguistics and Intelligent Text Processing, (pp.

136–145). Mexico City, Mexico.

[84] Patwardhan, S., Banerjee, S., & Pedersen, T. (2003). Using measures of semantic relatedeness

for word sense disambiguation. Conference on Computational Linguistics and Intelligent Text

Processing, (pp. 241–257). Mexico City, Mexico.

[85] Galley, M., & McKeown, K. (2003). Improving word sense disambiguation in lexical chaining.

International Joint Conference in Artificial Intelligence, (pp. 1486–1488). Acapulco, Mexico.

[86] Mihalcea, R., & Moldovan, D. (2000). An iterative approach to word sense disambiguation.

Florida Artificial Intelligence Research Society, (pp. 219–223). Orlando, US.

[87] Mihalcea, R. (2005). Large vocabulary unsupervised word sense disambiguation with graph-

based algorithms for sequence data labeling. Joint Human Language Technology and Empirical

Methods in Natural Language Processing Conference, (pp. 411-418). Vancouver, Canada.

[88] Resnik, P. (1993). Selection and information: A class-based approach to lexical relationships.

Ph.D. Thesis, University of Pennsylvania.

[89] Agirre, E., & Martinez, D. (2001). Learning class-to-class selectional preferences. 5th

Conference on Computational Natural Language Learning, (pp. 15-22). Toulouse, France.

[90] McCarthy, D., Carroll, J., & Preiss, J. (2001). Disambiguating noun and verb senses using

automatically acquired selectional preferences. International Workshop on Evaluating Word Sense

Disambiguation Systems, (pp. 119–122). Toulouse, France.

[91] Gale, W., Church, K., & Yarowsky, D. (1992). Estimating upper and lower bounds on the

performance of word-sense disambiguation programs. Annual Meeting of the Association for

Computational Linguistics, (pp. 249–256). Newark, U.S.A.

[92] Gale, W., Church, K., & Yarowsky, D. (1992). One sense per discourse. DARPA Speech and

Natural Language Workshop, (pp. 233–237). Nwe York, U.S.A.

[93] Krovetz, R. (1998). More than one sense per discourse. Workshop on Evaluating Word Sense

Disambiguation Systems. Sussex, England.

[94] Palmer, M., Dang, H., & Fellbaum, C. (2007). Making fine-grained and coarse-grained sense

distinctions, both manually and automatically. Journal of Natural Language Engineering , 13 (2),

137-163.

[95] Snyder, B., & Palmer, M. (2004). The English all-words task. Senseval-3.

Chapter VIII - References Page | 150

[96] Navigli, R. (2009). Word sense disambiguation: A survey. ACM Computer Survey , 41 (2).

[97] Resnik, P., & Yarkowsky, D. Distinguishing systems and distinguishing senses: new evaluation

methods for word sense disambiguation. J. Nat. Lang. Eng , 5 (2), 113-133.

[98] Grishman, R., & Sundheim, B. (1996). Message Understanding Conference - 6: A Brief

History. International Conference on Computational Linguistics.

[99] Rau, L. F. (1991). Extracting Company Names from Text. Artificial Intelligence Applications

of IEEE.

[100] Lee, S., & Geunbae Lee, G. (2005). Heuristic Methods for Reducing Errors of Geographic

Named Entities Learned by Bootstrapping. International Joint Conference on Natural Language

Processing.

[101] Witten, I. H., Bray, Z., Mahoui, M., & J., T. W. (1999). Using Language Models for Generic

Entity Extraction. International Conference on Machine Learning. Text Mining.

[102] Cohen, W. W., & Sarawagi, S. (2004). Exploiting Dictionaries in Named Entity Extraction:

Combining Semi-Markov Extraction Processes and Data Integration Methods. Conference on

Knowledge Discovery in Data.

[103] Tsuruoka, Y., & Tsujii, J. (2003). Boosting Precision and Recall of Dictionary-Based Protein

Name Recognition. Conference of Association for Computational Linguistics in Natural Language

Processing in Biomedicine.

[104] Alfonseca, E., & Manandhar, S. (2002). An Unsupervised Method for General Named Entity

Recognition and Automated Concept Discovery. International Conference on General WordNet.

[105] Poibeau, T., & Kosseim, L. (2001). Proper Name Extraction from Non-Journalistic Texts.

Computational Linguistics in the Netherlands.

[106] Bikel, D. M., Miller, S., Schwartz, R., & Weischedel, R. (1997). Nymble: a High-

Performance Learning Name-finder. Conference on Applied Natural Language Processing.

[107] Sekine, S. (1998). Description of the Japanese NE System Used For Met-2. Message

Understanding Conference.

[108] Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). NYU: Description of the

MENE Named Entity System as used in MUC-7. 7th Message Understanding Conference.

[109] Finkel, J. R., Grenager, T., & Manning, C. (2005). Proceedings of the 43nd Annual Meeting

of the Association for Computational Linguistics (ACL 2005). 363-370.

[110] Brin, S. (1998). Extracting Patterns and Relations from the World Wide Web. Conference of

Extending Database Technology. Workshop on the Web and Databases.

[111] Collins, M., & Singer, Y. Unsupervised Models for Named Entity Classification. Joint

SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large

Corpora.

Chapter VIII - References Page | 151

[112] Riloff, E., & Jones, R. (1999). Learning Dictionaries for Information Extraction using Multi-

level Bootstrapping. National Conference on Artificial Intelligence.

[113] Cucchiarelli, A., & Velardi, P. (2001). Unsupervised Named Entity Recognition Using

Syntactic and Semantic Contextual Evidence. (M. Press, Ed.) Computational Linguistics , 123-131.

[114] Pasca, M., Lin, D., Bigham, J., Lifchits, A., & Jain, A. (2006). Organizing and Searching the

World Wide Web of Facts—Step One: The One-Million Fact Extraction Challenge. National

Conference on Artificial Intelligence.

[115] Evans, R. (2003). A Framework for Named Entity Recognition in the Open Domain. Recent

Advances in Natural Language Processing.

[116] Nadeau, D., & Sekine, S. (2007). A survey of named entity recognition and classification.

Lingvisticae Investigationes , 30 (1), 3-26.

[117] Raghavan, H., & Allan, J. (2004). Using Soundex Codes for Indexing Names in ASR

documents. Human Language Technology conference - North American chapter of the Association

for Computational Linguistics. Interdisciplinary Approaches to Speech.

[118] Mikheev, A. (1999). A Knowledge-free Method for Capitalized Word Disambiguation.

Conference of Association for Computational Linguistics.

[119] Yarowsky, D. (1992). Word-sense disambiguation using statistical models of roget's

categories trained on large corpora. COLING, (pp. 454-460). Nantes, France.

[120] Agirre, E., Ansa, O., Hovy, E., & Martinez, D. (2000). Enriching very large ontologies using

the www. Ontology Learning Workshop, ECAI. Berlin, Germany.

[121] Ciaramita, M., & Johnson, M. (2003). Supersense Tagging of Unknown Nouns in WordNet.

EMNLP.

[122] Ciaramita, M., & Yasemin, A. (2006). Broad-Coverage Sense Disambiguation and

Information Extraction with a Supersense Sequence Tagger. Empirical Methods in Natural

Language Processing (EMNLP).

[123] Manning, C., & Schutze, H. (1999). Foundations of Statistical Natural Language Processing.

[124] Navigli, R. (2006). Consistent validation of manual and automatic sense annotations with the

aid of semantic graphs. Computational Lingusitics , 32 (2), 273-281.

[125] Navigli, R. (2006). Experiments on the validation of sense annotations assisted by lexical

chains. 11th Conference of the European Chapter of the Association for Computational Linguistics,

(pp. 129–136). Trento, Italy.

[126] Mihalcea, R. (2006). Knowledge-based methods for WSD. Word Sense Disambiguation:

Algorithms and Applications , pp. 107-131.

[127] Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations. Computational

Lingusitics, 19, pp. 103-120.

Chapter VIII - References Page | 152

[128] Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a

metric on semantic nets. IEEE Transactions on Syst. Man Cybernet., 19(1), pp. 17-30.

[129] Navigli, R., & Velardi, P. (2005). Structural semantic interconnections: A knowledge-based

approach to word sense disambiguation. IEEE Transactions on Pattern Analysis and Machine

Intelligence , 27 (7).

[130] Mihalcea, R., Tarau, P., & Figa, E. (2004). Pagerank on semantic networks, with application

to word sense disambiguation. 20th International Conference on Computational Linguistics, (pp.

1126-1132). Geneva, Switzerland.

[131] Cormen, T. H. (2009). Introduction to Algorithms, 3rd ed. Cambridge, England: MIT Press.

[132] Toutanova, K., Klein, D., Manning, C., & Singer, Y. (2003). Feature-Rich Part-of-Speech

Tagging with a Cyclic Dependency Network. HLT-NAACL 2003, (pp. 252-259).

[133] Toutanova, K., & Manning, C. D. (2000). Enriching the Knowledge Sources Used in a

Maximum Entropy Part-of-Speech Tagger. Joint SIGDAT Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), (pp. 63-70).

[134] Hirst, G., & Onge, D. S. (1998). Lexical chains as representations of context for the detection

and correction of malapropisms. Fellbaum, (pp. 305–332).

[135] Nedjah, N., França, F. M., & Souza, A. F. (2009). Intelligent Text Categorization and

Clustering. Studies in Computational Intelligence , 64.

[136] Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text Classification Using Machine

Learning Tehniques. WSEAS Transactions on Computers , 4, 966–974.

[137] Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing

Surveys , 34(1), 1-47.

[138] Moravec, P., M., K., & Snasel, V. (2004). LSI vs. wordnet ontology in dimension reduction

for information retrieval. 18-26.

[139] Lv, L., Liu, Y. S., & Liu, Y. (2006). Realizing English text classification with semantic set

index method. Journal of Beijing University of Posts and Telecommunications , 29 (2), 22-25.

[140] Yang, X.-Q., Sun, N., Sun, T.-L., Cao, X.-Y., & Zheng, X.-J. (2009). The Application of

Latent Semantic Indexing and Ontology in Text Classification. International Journal of Innovative

Computing, Information and Control , 5 (12(A)), 4491-4499.

[141] Brut, M., Dumitrescu, S., & Sèdes, F. (2010). A Semantic-Oriented Approach for Organizing

and Developing Annotation for E-learning. IEEE Transactions on Learning Technologies .

[142] Lee, Y.-H., Tsao, W.-J., & Chu, T.-H. (2009). Use of Ontology to Support Concept-Based

Text Categorization. Lecture Notes in Business Information Processing , 22(6), 201-213.

[143] Gu, H., & Zhou, K. (2006). Text Classification Based on Domain Ontology. Journal of

Communication and Computer , 3 (5).

Chapter VIII - References Page | 153

[144] Yang, X., Zhou, G., Su, J., & Tan, C. L. (2004). An NP-Cluster Based Approach to

Coreference Resolution. 20th International Conference on Computational Linguistics. Geneva.

[145] Gangemi, A., Guarino, N., Masolo, C., & Oltramari, A. (2003). Sweetening WORDNET with

DOLCE. AI Magazine , 24.

Appendix Page | 154

Appendix

Example run of the proposed GER System

This annex presents a test run of the system on a document composed of two sentences. We

present the steps of the system and we discuss the results.

Input document: “Currently, heart disease and stroke are the leading causes of death

worldwide and according to World Health Organisation estimates will kill almost 24

million people by 2030. The metabolic syndrome, associated with an increased risk of

type 2 diabetes and cardiovascular disease, affects about one fifth of the world's adult

population.”

The GER System starts by splitting the document into sentences. Then each sentence goes

through part-of-speech tagging, parsing, tokenization and a standard NER system to label

named entities with one of the probable 3 classes (person, location and organization). The

entities we are interested in are common and proper nouns (shown in bold above).

We obtain the following information:

Sentence 1: “Currently, heart disease and stroke are the leading causes of death

worldwide and according to World Health Organisation estimates will kill almost 24

million people by 2030.”

New sentence ID: 1

(ROOT

 (S

 (ADVP (RB Currently))

 (, ,)

 (S

 (NP

 (NP (NN heart) (NN disease))

 (CC and)

 (NP (NN stroke)))

 (VP (VBP are)

 (NP

 (NP (DT the) (VBG leading) (NNS causes))

 (PP (IN of)

 (NP (NN death) (NN worldwide))))))

 (CC and)

 (S

 (PP (VBG according)

 (PP (TO to)

 (NP (NNP World) (NNP Health) (NNP Organisation))))

 (NP (NNS estimates))

 (VP (MD will)

 (VP (VB kill)

 (NP

 (QP (RB almost) (CD 24) (CD million))

 (NNS people))

 (PP (IN by)

Syntactic tree for sentence #1

(on which to determine POS taggs and NP

groups)

Appendix Page | 155

 (NP (CD 2030))))))

 (. .)))

advmod(causes-10, Currently-1)

nn(disease-4, heart-3)

nsubj(causes-10, disease-4)

conj_and(disease-4, stroke-6)

nsubj(causes-10, stroke-6)

cop(causes-10, are-7)

det(causes-10, the-8)

amod(causes-10, leading-9)

nn(worldwide-13, death-12)

prep_of(causes-10, worldwide-13)

prepc_according_to(kill-22, to-16)

nn(Organisation-19, World-17)

nn(Organisation-19, Health-18)

pobj(kill-22, Organisation-19)

nsubj(kill-22, estimates-20)

aux(kill-22, will-21)

conj_and(causes-10, kill-22)

quantmod(million-25, almost-23)

number(million-25, 24-24)

num(people-26, million-25)

dobj(kill-22, people-26)

prep_by(kill-22, 2030-28)

T1000 [Currently] (UNKNOWN,RB,O) O[Currently] S[current] I[currently]

T1001 [,] (PUNCTUATION,,,O) O[,] S[Invalid term] I[,]

T1002 [heart] (COMMON,NN,O) O[heart] S[heart] I[heart]

T1003 [disease] (COMMON,NN,O) O[disease] S[diseas] I[disease]

T1004 [and] (COMMON,CC,O) O[and] S[and] I[and]

T1005 [stroke] (COMMON,NN,O) O[stroke] S[stroke] I[stroke]

T1006 [are] (COMMON,VBP,O) O[are] S[ar] I[are]

T1007 [the] (COMMON,DT,O) O[the] S[the] I[the]

T1008 [leading] (UNKNOWN,VBG,O) O[leading] S[lead] I[leading]

T1009 [causes] (COMMON,NNS,O) O[causes] S[caus] I[cause]

T1010 [of] (COMMON,IN,O) O[of] S[of] I[of]

T1011 [death] (COMMON,NN,O) O[death] S[death] I[death]

T1012 [worldwide] (COMMON,NN,O) O[worldwide] S[worldwid] I[worldwide]

T1013 [and] (COMMON,CC,O) O[and] S[and] I[and]

T1014 [according] (UNKNOWN,VBG,O) O[according] S[accord] I[according]

T1015 [to] (COMMON,TO,O) O[to] S[to] I[to]

T1016 [World] (UNKNOWN,NNP,ORGANIZATION) O[World] S[world] I[world]

T1017 [Health] (UNKNOWN,NNP,ORGANIZATION) O[Health] S[health] I[health]

T1018 [Organisation] (UNKNOWN,NNP,ORGANIZATION) O[Organisation] S[organis] I[organisation]

T1019 [estimates] (COMMON,NNS,O) O[estimates] S[estim] I[estimate]

T1020 [will] (COMMON,MD,O) O[will] S[will] I[will]

T1021 [kill] (COMMON,VB,O) O[kill] S[kill] I[kill]

T1022 [almost] (COMMON,RB,O) O[almost] S[almost] I[almost]

T1023 [24] (UNKNOWN,CD,NUMBER) O[24] S[Invalid term] I[24]

T1024 [million] (COMMON,CD,NUMBER) O[million] S[million] I[million]

T1025 [people] (COMMON,NNS,O) O[people] S[person] I[person]

T1026 [by] (COMMON,IN,O) O[by] S[by] I[by]

T1027 [2030] (UNKNOWN,CD,DATE) O[2030] S[Invalid term] I[2030]

T1028 [.] (PUNCTUATION,.,O) O[.] S[Invalid term] I[.]

New sentence ID: 2

(ROOT

 (S

 (NP

 (NP (DT The) (JJ metabolic) (NN syndrome))

 (, ,)

 (VP (VBN associated)

 (PP (IN with)

Dependency tree for sentence #1

(on which to calculate the Influence Matrix)

Token list for sentence #1

(Format: ID, token, type of word, POS tag, NER tag,

original token, stem, singular form)

Syntactic tree for sentence #2

(on which to determine POS taggs and NP

groups)

Appendix Page | 156

 (NP

 (NP (DT an) (VBN increased) (NN risk))

 (PP (IN of)

 (NP

 (NP (NN type) (CD 2) (NN diabetes))

 (CC and)

 (NP (JJ cardiovascular) (NN disease)))))))

 (, ,))

 (VP (VBZ affects)

 (PP (IN about)

 (NP

 (NP (CD one) (NN fifth))

 (PP (IN of)

 (NP

 (NP (DT the) (NN world) (POS 's))

 (NN adult) (NN population))))))

 (. .)))

det(syndrome-3, The-1)

amod(syndrome-3, metabolic-2)

nsubj(affects-18, syndrome-3)

partmod(syndrome-3, associated-5)

det(risk-9, an-7)

amod(risk-9, increased-8)

prep_with(associated-5, risk-9)

nn(diabetes-13, type-11)

num(diabetes-13, 2-12)

prep_of(risk-9, diabetes-13)

amod(disease-16, cardiovascular-15)

prep_of(risk-9, disease-16)

conj_and(diabetes-13, disease-16)

num(fifth-21, one-20)

prep_about(affects-18, fifth-21)

det(world-24, the-23)

poss(population-27, world-24)

nn(population-27, adult-26)

prep_of(fifth-21, population-27)

T2000 [The] (UNKNOWN,DT,O) O[The] S[the] I[the]

T2001 [metabolic] (UNKNOWN,JJ,O) O[metabolic] S[metabol] I[metabolic]

T2002 [syndrome] (COMMON,NN,O) O[syndrome] S[syndrome] I[syndrome]

T2003 [,] (PUNCTUATION,,,O) O[,] S[Invalid term] I[,]

T2004 [associated] (UNKNOWN,VBN,O) O[associated] S[associ] I[associated]

T2005 [with] (COMMON,IN,O) O[with] S[with] I[with]

T2006 [an] (COMMON,DT,O) O[an] S[an] I[an]

T2007 [increased] (UNKNOWN,VBN,O) O[increased] S[increas] I[increased]

T2008 [risk] (COMMON,NN,O) O[risk] S[risk] I[risk]

T2009 [of] (COMMON,IN,O) O[of] S[of] I[of]

T2010 [type] (COMMON,NN,O) O[type] S[type] I[type]

T2011 [2] (UNKNOWN,CD,NUMBER) O[2] S[Invalid term] I[2]

T2012 [diabetes] (UNKNOWN,NN,O) O[diabetes] S[diabet] I[diabete]

T2013 [and] (COMMON,CC,O) O[and] S[and] I[and]

T2014 [cardiovascular] (COMMON,JJ,O) O[cardiovascular] S[cardiovascular] I[cardiovascular]

T2015 [disease] (COMMON,NN,O) O[disease] S[diseas] I[disease]

T2016 [,] (PUNCTUATION,,,O) O[,] S[Invalid term] I[,]

T2017 [affects] (COMMON,VBZ,O) O[affects] S[affect] I[affect]

T2018 [about] (COMMON,IN,O) O[about] S[about] I[about]

T2019 [one] (COMMON,CD,NUMBER) O[one] S[on] I[one]

T2020 [fifth] (COMMON,NN,O) O[fifth] S[fifth] I[fifth]

T2021 [of] (COMMON,IN,O) O[of] S[of] I[of]

T2022 [the] (COMMON,DT,O) O[the] S[the] I[the]

T2023 [world] (COMMON,NN,O) O[world] S[world] I[world]

T2024 ['s] (PUNCTUATION,POS,O) O['s] S[Invalid term] I[']

T2025 [adult] (COMMON,NN,O) O[adult] S[adult] I[adult]

Dependency tree for sentence #2

(on which to calculate the Influence Matrix)

Token list for sentence #2

(Format: ID, token, type of word, POS tag, NER tag,

original token, stem, singular form)

Appendix Page | 157

T2026 [population] (COMMON,NN,O) O[population] S[popul] I[population]

T2027 [.] (PUNCTUATION,.,O) O[.] S[Invalid term] I[.]

Tokens that can be merged are merged (ex: “World”, “Health” and “Organization” are

merged into a single String Entity “World Health Organization”). Based on the dependency

trees for every sentence, the asimetric influence matrix is created:

Influence Matrix: (ROW-Subject) has property (COLUMN-Object)

hea dis str cau dea wor Wor est per syn ris typ dia dis wor adu pop

heart
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0

disease 1 --- 1 0.1 1 1 1 1 1 0 0 0 0 0 0 0 0

stroke 0.1 0.1 --- 0.1 0.1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0

cause 0.9 1 0.9 --- 0.9 1 0.9 0.9 0.9 0 0 0 0 0 0 0 0

death 0.1 0.1 0.1 0.1 --- 0.1 0.1 0.1 0.1 0 0 0 0 0 0 0 0

worldwide 0.1 0.1 0.1 0.1 1 --- 0.1 0.1 0.1 0 0 0 0 0 0 0 0

World Hea 0.1 0.1 0.1 0.1 0.1 0.1 --- 0.1 0.1 0 0 0 0 0 0 0 0

estimate 0.1 0.1 0.1 0.1 0.1 0.1 1 --- 1 0 0 0 0 0 0 0 0

person 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 --- 0 0 0 0 0 0 0 0

syndrome 0 0 0 0 0 0 0 0 0 --- 0.9 0.1 0.1 0.1 0.1 0.1 1

risk 0 0 0 0 0 0 0 0 0 0.1 --- 0.9 1 0.9 0.1 0.1 0.1

type 0 0 0 0 0 0 0 0 0 0.1 0.1 --- 0.1 0.1 0.1 0.1 0.1

diabetes 0 0 0 0 0 0 0 0 0 0.1 0.1 1 --- 1 0.1 0.1 0.1

disease 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 --- 0.1 0.1 0.1

world 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 --- 0.1 0.1

adult 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1 --- 0.1

population 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 1 1 ---

The matrix shows the influence of each entity on every other. For example the influence of

“heart” on “disease” in the first sentence is 1.0 because “disease” is determined by “heart”

(ex: Question: what type of disease? Answer: A heart disease. This is what is meant by the

influence of an entity over another)

computeInfluence for : disease-4 - heart-3

 Dependency val 1.0 direct link for nn(disease-4,heart-3)

while “hearth” is not determined by “disease” and therefore receives the context score of

0.1.

Next, each String Entity (single or multiple joined tokens) gets assigned a number of

possible classes from the YAGO ontology. The assignation process was described in

section V.4.2.1. For example, String Entity “heart” gets the following probable canonic

entity set PCESEheart containing 33 items:

wordnet_heart_valve_105395098, wordnet_heart_valve_103507857,

wordnet_bullock's_heart_111694866, wordnet_bullock's_heart_107761461,

wordnet_heart_block_114362593, wordnet_line_of_heart_113906936,

wordnet_bleeding_heart_111910271, wordnet_heart_disease_114103288,

wordnet_biauriculate_heart_105389310, wordnet_heart_104857490,

Appendix Page | 158

wordnet_heart_attack_114112855, wordnet_heart_failure_114112255,

wordnet_broken_heart_107534847, wordnet_valvular_heart_disease_114112466,

wordnet_artificial_heart_102745492, wordnet_heart_murmur_114334814, wordnet_heart_105388805,

wordnet_congenital_heart_defect_114469014, wordnet_bleeding_heart_109859818,

wordnet_heart_104624826, wordnet_heart_105919263, wordnet_heart_113865904,

wordnet_heart_107651905, wordnet_heart_103507048, wordnet_athlete's_heart_105389182,

wordnet_congestive_heart_failure_114112719, wordnet_heart_surgery_100675219,

wordnet_heart_cherry_112642435, wordnet_heart_cherry_107757602,

wordnet_artichoke_heart_107718920, wordnet_rheumatic_heart_disease_114142983,

wordnet_heart_urchin_102319829, wordnet_coronary_heart_disease_114102631

As a side comment, out of the 33 entities we can spot 7 wordnet_heart_# (underlined).

In this scenario we are interested in wordnet_heart_107651905 (marked with italics)

which WordNet describes as: (n) heart, pump, ticker (the hollow muscular organ located

behind the sternum and between the lungs; its rhythmic contractions move the blood

through the body) "he stood still, his heart thumping wildly", being actually the second

most used sense for the word “heart”. However, the computer does not know at this time

which, if any, Canonic Entity is the correct choice.

Next, the Operational Graph is created. Initially the Operational Graph consists of only the

WordNet hypernym graph to which every possible Canonic Entity of every String Entity is

added (even if it forms a disconnected graph). Next, a breadth-first search is performed on

the YAGO graph starting from the just added Canonic Entities to a maximum depth of 3,

adding encountered neighbors and edges.

Separately, Process Groups are created using a flood-fill algorithm on the influence matrix.

From this point forward each Process Group is treated separately as they are all

independent.

We consider Process Group #1 as the group containing the entities of the first sentence.

At this point, we need to create the N-partite graph for this Process Group. For sentence 1

we have 9 String Entities so N = 9. Starting at every Canonic Entity belonging to every

String Entity, a breadth-search is performed on the Operational Graph to see what other

Canonic Entities of interest are in the neighborhood. For example, from the entities

belonging to String Entity “heart”, starting from wordnet_heart_murmur_114334814

we reach wordnet_disease_114070360. To this link we assign a score (described in

sections V.4.3.1. and V.4.3.3.) based on the distance, influence and types of relations

between the two end-point entities.

wordnet_heart_murmur_114334814 -> wordnet_disease_114070360 [1003] l:2

infl: 0.1 score: 0.05 wordnet_disease_114070360 [isPartOf]

wordnet_symptom_114299637 [subClassOf] wordnet_heart_murmur_114334814

Also starting from the other endpoint we find:

Appendix Page | 159

wordnet_disease_114070360 -> wordnet_heart_murmur_114334814 [1002] l:2

infl: 1.0 score: 0.5 wordnet_heart_murmur_114334814 [subClassOf]

wordnet_symptom_114299637 [isPartOf] wordnet_disease_114070360

Using this process paths are found between Canonic Entities of interest. Every time such a

path is added an edge is created in the N-partite graph. In this example, the undirected edge

between wordnet_heart_murmur_114334814 and wordnet_disease_114070360

will have a score of 0.55 (0.05 + 0.5). Only paths between Canonic Entities belonging to

different String Entities (partitions) are added.

Next, the Linker Algorithm is run (described in section V.3.). After step 3 of the algorithm

we have the following Result Sets (only the first 3 are shown):

RS1 : 1.25

 heart [1002]: wordnet_heart_murmur_114334814 (33)

 disease [1003]: wordnet_disease_114070360 (51)

 stroke [1005]: ANY (16)

 causes [1009]: wordnet_probable_cause_105824514 (9)

 death [1011]: ANY (29)

 worldwide [1012]: ANY (0)

 World Health Organisation [1018]: ANY (1)[World_Health_Organization]

 estimates [1019]: ANY (4)

 people [1025]: ANY (42)

RS2 : 1.1

 heart [1002]: wordnet_heart_disease_114103288 (33)

 disease [1003]: wordnet_cardiovascular_disease_114057371 (51)

 stroke [1005]: ANY (16)

 causes [1009]: ANY (9)

 death [1011]: ANY (29)

 worldwide [1012]: ANY (0)

 World Health Organisation [1018]: ANY (1)[World_Health_Organization]

 estimates [1019]: ANY (4)

 people [1025]: ANY (42)

RS3 : 0.7333333333333333

 heart [1002]: wordnet_heart_murmur_114334814 (33)
 disease [1003]: wordnet_blood_disease_114189204 (51)

 stroke [1005]: wordnet_ischemic_stroke_114166358 (16)

 causes [1009]: ANY (9)

 death [1011]: ANY (29)

 worldwide [1012]: ANY (0)

 World Health Organisation [1018]: ANY (1)[World_Health_Organization]

 estimates [1019]: ANY (4)

 people [1025]: ANY (42)

…

We then run step 4 or the Linker Algorithm which is supposed to merge non-overlapping

Result Sets. In this case, no improvements are found.

This output is the result of the GER system. It has the String Entities on the left side, their

ID in square brackets and then the suggested Canonic Entity. Following the canonic entity

is the number of Canonic Entities it had to choose from (how large the PCESE of each

String Entity is). When there is just one possible Canonic Entity, like in the case of “World

Health Organization”, the corresponding entity is shown in square brackets but unless there

Appendix Page | 160

is evidence to support it (connecting links in the graph) it is not selected by default, instead

the system preferring to say it does not know.

The highest scoring Result Set of this example (score 1.25) can be analyzed as follows:

For String Entity “heart” it has missed the intended result wordnet_heart_107651905,

instead choosing wordnet_heart_murmur_114334814 because of the strong link to

wordnet_disease_114070360. Interestingly, consulting the debugging log of the

system, there is no path (of length equal or less than 3) from

wordnet_heart_107651905 to any other Canonic Entity. Because of the structure of the

WordNet hypernym tree, in this scenario, there was no way for the system to discover to

correct Canonic Entity.

For String Entity “disease” it has chosen the correct Canonic Entity. However this choice

was made on the partially wrong path to wordnet_heart_murmur_114334814.

For the String Entities “stroke”, “death”, “estimates” and “people” the GER system did not

find any information path so did not know what Canonic Entity to choose from.

For String Entity “worldwide” the system did not find any possible Canonic Entity that

could represent it. This happens for words unknown to WordNet or YAGO, or if the

cleaning step of the Canonic Entity assignation procedure cleans out all the Canonic

Entities.

Last, for String Entity “World Health Organization” even though its PCESE only contains

one entity World_Health_Organization (which is actually the correct one), because it

does not find any information path, it prefers not to choose it.

Overall, in respect to the way we defined accuracy for the GER system, for this sentence

the system would receive a score of 1/9 = 11% accuracy, for correctly matching only one of

the 9 interesting String Entities.

Moving on to the second sentence:

Sentence 2: “The metabolic syndrome, associated with an increased risk of type 2

diabetes and cardiovascular disease, affects about one fifth of the world's adult

population.”

Before discussing the results for the second sentence, it is interesting to note that because

“metabolic” and “cardiovascular” are seen as adjectives (“JJ” part-of-speech tag) they are

not included in the analysis even though for us, humans, they are relevant.

Appendix Page | 161

The same steps as for the first sentence are taken to create the N-partite graph based on the

Operational Graph. The Linker Algorithm is run (here N = 8). We present two Result Sets

after step 3 of the algorithm:

RS1 : 0.9833333333333334

 syndrome [2002]: ANY (15)

 risk [2008]: ANY (4)

 type [2010]: ANY (14)

 diabetes [2012]: ANY (5)

 disease [2015]: ANY (51)

 world [2023]: wordnet_world_102472987 (16)

 adult [2025]: wordnet_adult_109605289 (7)

 population [2026]: wordnet_population_108179879 (9)

 …

RS4 : 0.65

 syndrome [2002]: wordnet_syndrome_114304060 (15)

 risk [2008]: ANY (4)

 type [2010]: ANY (14)

 diabetes [2012]: wordnet_diabetes_114117805 (5)

 disease [2015]: wordnet_genetic_disease_114151139 (51)

 world [2023]: ANY (16)

 adult [2025]: ANY (7)

 population [2026]: ANY (9)

 …

After running step 4 (merging non-overlapping Result Sets) we find that merging the first

RS and the forth RS is possible, as they are non-overlapping, summing the final score

accordingly and producing the highest Result Set possible:

RS1 : 1.6333333333333333

 syndrome [2002]: wordnet_syndrome_114304060 (15)

 risk [2008]: ANY (4)

 type [2010]: ANY (14)

 diabetes [2012]: wordnet_diabetes_114117805 (5)

 disease [2015]: wordnet_genetic_disease_114151139 (51)

 world [2023]: wordnet_world_102472987 (16)

 adult [2025]: wordnet_adult_109605289 (7)

 population [2026]: wordnet_population_108179879 (9)

This Result Set can be interpreted as follows:

String Entity “syndrome” has chosen wordnet_syndrome_114304060 correctly,

identifying it as a pattern of symptoms indicative of some disease, the second most

common sense of syndrome in WordNet.

String Entities “risk” and “type” were not identified.

String Entities “diabetes” was correctly identified as wordnet_diabetes_114117805.

The length 2 information path to disease is the following:

wordnet_diabetes_114117805 -> wordnet_genetic_disease_114151139 [2015]

l:2 infl: 1.0 score: 0.5 wordnet_genetic_disease_114151139 [subClassOf]

Appendix Page | 162

wordnet_polygenic_disorder_114075199 [subClassOf]

wordnet_diabetes_114117805

String Entity “disease” was incorrectly identified as wordnet_genetic_disease_

114151139. Even though wordnet_genetic_disease_114151139 is actually a sub

class of wordnet_disease_114070360 (the expected correct choice), for this sentence

specificity is not better because the sentence makes no reference to a genetic disease. The

information path linking “syndrome” to “disease”:

wordnet_syndrome_114304060 -> wordnet_genetic_disease_114151139 [2015]

l:2 infl: 0.1 score: 0.05 wordnet_genetic_disease_114151139

[subClassOf] wordnet_disease_114070360 [isPartOf]

wordnet_syndrome_114304060

String Entities “world”, “adult” and “population” are the correct choices for this example.

Interestingly, out of the 16 possible Canonic Entities for “world”,

wordnet_world_102472987 was chosen.

wordnet_population_108179879 -> wordnet_world_102472987 [2023] l:2 infl:

1.0 score: 0.5 wordnet_world_102472987 [isMemberOf]

wordnet_people_107942152 [subClassOf] wordnet_population_108179879

This presents some level of ambiguity, because of the 8 senses WordNet has for “world”

(included in the 16 possible Canonic Entities we assigned), the chosen sense was the

second, referring to the world as a group of people. While maybe the first sense of “world”

would have been better (world seen as everything that exists on earth), the second sense is

also correct; arguably, world seen as the physical Earth globe would also be correct,

captured in another Canonic Entity of the form wordnet_world_#. So in this scenario we

have multiple correct answers.

The score for this Result Set is 5/8 = 62% correct, a quite good result considering the very

large search space available.

Overall, for the example document we had 1 correctly identified Canonic Entity out of 9 for

the first sentence/Process Group and 5 out of 8 for the second sentence/Process Group. The

overall accuracy is thus 6(1+5) / 17(9+8) = 35%. The scores for this example were

calculated using the strict method (first method presented in the evaluation section V.5 of

the system), meaning we considered only the first Result Set provided by the system and

any Canonic Entity that was not the expected Canonic Entity would be judged as a

mismatch.

