
Tagging Romanian Texts: a Case Study for QTAG, a Language
Independent Probabilistic Tagger

Dan Tufis Oliver Mason
The Romanian Academy Centre for Artificial Intelligence The University of Birmingham, United Kingdom

Bucharest, Romania [O.Mason@bham.ac.uk]
[tufis@racai.ro]

Abstract

This paper describes an experiment on tagging Romanian
using QTAG, a parts-of-speech tagger that has been developed
originally for English, but with a clear separation between
the (probabilistic) processing engine and the (language
specific)resource data. This way, the tagger is usable across
various languages as shown by successful experiments on
three quite different languages: English, Swedish and
Romanian. After a brief presentation of the QTAG tagger, the
paper dwells on language resources for Romanian and the
evaluation of the results. A complexity metrics for tagging
experiments is proposed which considers the performance of
a tagger with respect to the “difficulty” of a text.

Introduction
Lexical ambiguity resolution is a key task in natural lan-
guage processing (Baayen & Sproat, 1996). It can be re-
garded as a classification problem: an ambiguous lexical
item is one that in different contexts can be classified dif-
ferently and given a specified context the disambigua-
tor/classifier decides on the appropriate class. The features
that are relevant to the classification task are encoded into
the tags. It is part of the corpus linguistics folklore that in
order to get high accuracy level in statistical POS disam-
biguation, one needs small tagsets and reasonable large
training data. The effect of tagset size on tagger perfor-
mance has been discussed in (Elworthy, 1995); what a rea-
sonable training corpus means, typically varies from
100,000 words to more than one million. Although some
taggers are advertised to be able to learn a language model
from raw (unannotated) texts, they require a post valida-
tion of the output and a bootstrapping procedure that
would eventually get the tagger (in possibly several itera-
tions) to an acceptable error rate. The larger the tagset, the
larger the necessary training corpora (Berger, Pietra &
Pietra, 1996). Provided that enough training data is avail-
able, this should not be too problematic as long response
time is seriously affected. It is quite obvious that language
models based on large tagsets would need large memory
resources and given current hardware limitations, a lot of
overhead (required for memory management) would de-
crease the performance to an unacceptable level.

Tiered Tagging
Most of the real time taggers (if not all of them) are able
to ensure a fast response due to their ability to keep the
language model in the core memory. In case there is not
enough RAM to load it, a typical tagger (at least those in

the public domain) would give up (either graciously in-
forming about lack of memory, or just frustratingly crash-
ing). For instance, with about 700 tags, a language model
of 350 MB or more would not be surprising (this was the
actual size of the transition matrix while training QTAG
for Romanian) and it would be out of question to keep it
in RAM on usual computers,. Apparently there are two
solutions for overcoming such a deadlock: either to reduce
the tagset to a manageable size and lose information or to
modify the tagger with some extra-code, to take care of
data swapping and accept a probably serious degradation of
response time. In (Tufis, 1998) it is argued that there is
another solution providing a nice compromise. With a
small price in tagging accuracy (as compared to a reduced
tagset approach), and practically no price in computational
resources, it is possible to tag a text with a large tagset by
using language models built for reduced tagsets and conse-
quently small training corpora. We call this way of
tagging tiered tagging. Given the space limitation we will
not go into details concerning tiered tagging (a full presen-
tation of the tiered tagging approach and an in-depth dis-
cussion of the methodology and results are given in
(Tufis, 1998)). In general terms, tiered tagging uses a
hidden tagset (we call it C-tagset) of a smaller size (in our
case 89 tags) based on which a language model is built.
This language model serves for a first level of tagging.
Then, a post-processor deterministically replaces the tags
from the small tagset with one or more (in our experi-
ments never more than 2) tags from the large tagset (we
call it MSD-tagset). The words that after this replacement
become ambiguous (in terms of the MSD-tagset annota-
tion) are more often than not the difficult cases in statisti-
cal disambiguation. Therefore, if full disambiguation is
desired (instead of k-best tagging), the different interpreta-
tions of the few words that remain ambiguous (in our ex-
periment, less than 10%) are differentiated by very simple
contextual rules. These rules investigate, depending on the
ambiguity class, left, right or both contexts within a
limited distance (in our experiment never exceeding 4
words in one direction) for a disambiguating tag or word-
form. The success rate of this second phase was higher
than 98%. Given the rare cases when contextual rules
application is required, the response time penalty is very
small. Depending on how accurate the contextual rules
are, the error rate for the final tagged text could be practi-
cally the same as for the hidden tagging phase. Obviously,
the reduced and the extended tagsets have to be in a spe-
cific relation (the small tagset should subsume the large
one). In (Tufis, 1998) it is shown how a reduced tagset

(C-tagset) can be interactively designed from a large tagset
(MSD-tagset), based on a trial-and-error ID3-like proce-
dure. The global error rate of the tiered tagging is given by
the relation:

Error-rate= (Nerrors_tagger+Nerrors_mapping)/Nwords

where:
Nwordsis the total number of words in the tagged text
Nerrors_tagger is the number of errors made during the
first phase of tagging (C-tagset tagging)
N e r r o r s _ m a p p i n g is the number of errors made by
the second phase of tagging (the mapping from
C-tagset to MSD-tagset)

As any error made at the first step would show up in the
final result, the Error-rate above is cumulatively speci-
fied. The additional errors, Nerrors_mapping, could be roughly
estimated as follows (for a rigorous upper-limit evaluation
of this estimation, see (Tufis, 1998)): Let us consider that
all the remaining ambiguous words Namb, were correctly
tagged in the first step (this is certainly an overestimation
if one considers a normal distribution of errors). Then,
considering e as the average error rate for rule-based dis-
ambiguation, it follows that approximately Namb*ε words
will be improperly disambiguated in the second phase.
The C-tagset induction process grants a (user specified)
maximum value for the Namb/Nwords. In our experiment this
was set to 10%, that is a C-tagset tagged text can be
mapped error-free onto a MSD-tagset tagged text with at
most 10% words remaining ambiguous. With an e less
than 5%, one gets less than 0.5% error contribution of the
C-tagset onto MSD-tagset mapping in the final accuracy
of the MSD-tagset tagged text.

Given that the final accuracy of tiered tagging depends on
the performance of the first (hidden) tagging step, we will
address here only this phase. For the second phase of the
tiered tagging (including C-tagset design, contextual rules
acquisition and application and commented results), the
interested reader is pointed to (Tufis, 1998).

The tagger
There are two basic approaches to part-of-speech tagging:
rule-based and probabilistic. It is also possible to com-
bine both into a hybrid approach. The tagger presented in
this paper is purely probabilistic.

The first step in any tagging process is to look up each
token of the text in a dictionary. If the token cannot be
found, the tagger has to have some fallback mechanism,
such as a morphological component or some heuristic
methods. The difficult task is to deal with ambiguities:
only in trivial cases will there be exactly one tag per
word. This is were the two approaches differ: while the
rule-based approach tries to apply some linguistic knowl-
edge (usually encoded in rules) in order to rule out illegal
tag combinations, a probabilistic tagger determines which
of the possible sequences is more probable, using a lan-
guage model that is based on the frequencies of transitions
between different tags.
A rule-based language model can be created by a human
using linguistic knowledge, but it is not reasonable to
hand-coded a probabilistic language model. These models
are generally created from training data, i.e. they are learnt
from examples. This is the way QTAG works: it uses
only probabilities for disambiguating tags within a text,
and no rule-based mechanism. As a result, it can easily

adapted for new languages, as long as some pre-tagged
training corpus is available. The tagger has been developed
at Corpus Research in Birmingham and is freely available
for research purposes (for more information on this see
http://www-clg.bham.ac.uk/tagger.html).

The basic algorithm is fairly straight-forward: at first, the
tagger looks up the dictionary for all possible tags that the
current token can have, together with their respective lexi-
cal probabilities (i.e. the probability distribution of the
possible tags for the word form). This is then combined
with the contextual probability for each tag to occur in a
sequence preceded by the two previous tags. The tag with
the highest combined score is selected. Two further pro-
cessing steps also take into account the scores of the tag
as the second and first element of the triplet as the
following two tokens are evaluated.

QTAG works by combining two sources of information: a
dictionary of words with their possible tags and the corre-
sponding frequencies and a matrix of tag sequences, also
with associated frequencies. These resources can easily be
generated from a pre-tagged corpus.

The tagging works on a window of three tokens, which is
filled up with two dummy words at the beginning and the
end of the text. Tokens are read and added to the window
which is shifted by one position to the left each time. The
token that ‘falls’ out of the window is assigned a final tag.
The tagging procedure is as follows:
1. read the next token
2. look it up in the dictionary
3. if not found, guess possible tags
4. for each possible tag

a. calculate Pw = P(tag|token) the probability of the
token to have the specified tag

b. calculate Pc = P(tag|t1,t2), the probability of the
tag to follow the tags t1 and t2.

c. calculate Pw,c = Pw *Pc, the joint probability of
the individual tag assignment together with the
contextual probability.

5. repeat the computation for the other two tags in the
window, but using different values for the contextual
probability: the probabilities of the tag being
surrounded and followed by the two other tags
respectively.

For each recalculation (three for each token) the resulting
probabilities are combined to give the overall probability
of the tag being assigned to the token. As these values be-
come very small very quickly, they are represented as
logarithms to the base 10. For output, the tags are sorted
according to their probability, and the difference in proba-
bilities between the tags gives some measure of the confi-
dence with which the tag ought to be correct (see below
for an example of this).

The tagger is implemented in a client-server model. The
server is implemented in C, while the client is written in
Java. The knowledge base resides on the server and the
tagging engine retrieves the relevant data for tags and tag
sequence probabilities from it via a network connection.
This way, the tagger can run on different platforms, pro-
vided there is a server available. The total size of the exe-
cutable code files is less than ten kilobytes. Furthermore,
since the tagger is implemented as a Java class, it can
easily be used as a module in other linguistic applications.

The non-ASCII characters dealt with by QTAG are
encoded as standard SGML character entities as the server
is not Unicode capable (but the client is).

The guesser
The morphology necessary to deal with the unknown
words is encoded as a language specific resource. There are
two different guessers: the first one is based on a list of
the final three letters of all words from the lexicon with
their respective tag probabilities. This list is built auto-
matically during the training of the tagger. This very sim-
ple mechanism seems sufficiently general to yield good
results at little cost, even in languages with a rather com-
plex morphology.

The second guesser (Romanian-specific), built at RACAI,
is more linguistically motivated and considers the real in-
flectional endings for open class words (nouns, adjectives,
verbs). Each ending (including the 0-ending) is associated
with an ambiguity class consisting of appropriate tags for
open class words (the 0-ending includes also tags for
abbreviations, residuals, and interjections). By a retrograde
analysis (right to left) of the unknown word, the guesser
identifies all possible endings. The ambiguity classes
corresponding to all the possible endings are merged, with
higher probability assigned to the interpretations provided
by longer endings. Depending on the way the guesser is
invoked, the unknown word is assigned either this merged
ambiguity class(the default) or the ambiguity class
corresponding to the longest matched ending. To evaluate
the guesser, we extracted from our main dictionary (D0)
all the words which contained in their ambiguity class an
interpretation belonging to close classes, words with root
2 characters long and also some irregular open class words
and created a guesser lexicon of about 4000 entries
(D1).The rationale for including the words with roots 2
characters long in D1 was because we imposed the guesser
the restriction that the remaining part of a word, after
removing the longest ending, be longer than 2 letters. The
first experiment considered testing the guesser in the “all
interpretations”-mode on the words in D0-D1. All the
wrongly classified words were analysed and a few
idiosyncratic endings and interpretations were added to the
list of <ending : ambiguity-class> pairs. Some irregular
words were also moved into D1. This step was repeated
until a precision of 100% was obtained. A step further
was to evaluate the effectiveness of the “longest match”
heuristics, that is we set the guesser to return the
ambiguity class for the longest identified ending only. The
rationale for this was that in the vast majority of cases,
recognising longer endings made the previous ones quite
unlikely. The rare exceptions were put in the D1 lexicon.
The results we obtained by running the guesser in the
“longest match” mode on D1-D0 (more than 400,000
wordforms) exceeded our expectations. There were reported
only 8892 “errors” (2.17%). By error analysis we found
that almost half of these errors were not guesser errors:
they were either entries in the dictionary having assigned a
wrong MSD or entries corresponding to fake words that
appeared in Orwell’s 1984 (words belonging to newspeak
or proles speak). The real errors (4324, or 1.08%)
clustered quite regularly and pointed out a small number of
words with the final letter(s) in their roots combining
with the real endings. Put differently, the errors were
given by wrong segmentations root+ending: α+βγ instead

of αβ+γ (both γ and βγ being recorded as endings). Given
the few instances of such combinations, one way to
overcome this type of error was to import those MSDs
associated to γ which are valid for the root αβ into the
interpretation list associated with the ending βγ. The
average length of an MSD-ambiguity class returned for an
unknown word was 11. Given that the guesser is supposed
to work for the tagger, we turned the MSDs into tags as
used by the tagger (see section “The Tagset”) and the
average length of tag-ambiguity class decreased to 3 tags
per unknown word. We run again the guesser over the D0-
D1 lexicon and we got(in the “longest match” mode) a
much smaller number of errors: 1302. In principle, with
less than 0.3% guessing errors we could have been
satisfied. However we made another step that was very
easy to implement, could ensure almost error-free
guessing and would not alter the computational and
accuracy performance of the tagger. What we noticed was
that for 968 words that were not correctly guessed using
the “longest match” mode, the correct interpretation could
be found in the second longest matched endings. So, the
guesser was set to return the union of the interpretations
for the 2 longest matched endings. With this modification,
the average length of the tag-ambiguity class doubled (6
tags/unknown words). Given that the ambiguity classes
very frequently included tags that subsumed some other
tags in the same list, and also that quite frequently there
were cases when two or more tags in the ambiguity class
would represent the full expansion of a more general tag,
we decided to eliminate all these redundant tags from the
their ambiguity classes. Consequently, the average lengths
of the ambiguity class returned for an unknown word
become reasonably shorter (3.3 tags). The number of
errors returned by the guesser run in this mode for the
words in D0-D1 was 181 (0.04%) but all the wrongly
labelled words were infrequent wordforms, unlikely to
occur other than as hapaxes in normal texts.

Language Resources
The Romanian wordforms lexicon was created based on a
35.000-lemma lexicon by means of our EGLU natural
language processing platform (Tufis, 1997). Since several
words in the corpus were not in the EGLU lexicon, most
of them were manually lemmatised, introduced in the
unification-based lexicon and later on expanded to the full
paradigms of every new lemma. The table in Figure 1
provides information on the data content of the main
dictionary that is used for the corpus analysis.

The MSDs (Morpho-Syntactic Descriptions) represent a
set of codes as developed in the MULTEXT-EAST
project1. AMB-MSD represents the number of ambiguity
classes (Weischedel & all, 1993; Abney, 1997) or
genotypes (Tzoukermann & Radev). The morpho-syntactic
descriptions are provided as strings, using a linear
encoding. In this notation, the position in a string of
characters corresponds to an attribute, and specific
characters in each position indicate the value for the
corresponding attribute. For a given wordform several
MSDs might be applicable (accounting this way for
homographs). The set of all the MSDs applicable to a
given word defines the MSD-ambiguity class for that
word. The Romanian lexicon contains 869 MSD-

1 For the final reports see http://nl.ijs.si/ME

ambiguity classes (for more details on the Romanian
dictionary and corpora encoding and several relevant
statistics see (Tufis & all, 1997)).

Entries Word-forms Lemmas MSDs AMB-MSD
419869 347126 33515 611 869

Figure 1: Romanian dictionary overview

The corpus used in the experiments and evaluation
reported here was made of the integral texts in two books:
Orwell's 1984 and Plato's The Republic. A brief overview
of these texts is given below:

Text Occurrences Words Lemmas MSDs AMB-MSD
1984 101460 14040 7008 396 524

Republic 114720 10350 4697 369 490
Common 56804 4016 2524 319 394

Figure 2: Romanian corpus overview

The existent SGML markup (TEI conformant) was
stripped off and the text has been tokenised. Please note
that a token is not necessarily a word: one orthographic
word may be split into several tokens (the Romanian “da-
mi-l” (give it to me) is split into 3 tokens) or several
orthographic words may be combined into one token (the
Romanian words "de la" (from) are combined into one
token "de_la"). Each lexical unit in the tokenised text was
automatically annotated with all its applicable MSDs and
then hand disambiguated. This was the main resource,
which we called MSD-tagged corpus, for training and
evaluating the tagger. The figure below exemplifies the
MSD-tagged corpus.

Într- Spsay
o Tifsr
zi Ncfsrn
senină Afpfsrn
şi Ccssp
friguroasă Afpfsrn
de Spsa
aprilie Ncms-n
, COMMA
pe Spsa
când Rw
ceasurile Ncfpry
băteau Vmii3p
...

Figure 3: MSD-tagged corpus overview

The Tagset
The tagset for Romanian contains 79 tags for different
morpho-syntactic categories, plus 10 tags for punctuation.
The tagset has been derived by a trial-error procedure from
the 611 morpho-syntactic description codes(MSDs) defined
for encoding the Romanian lexicon. By observing the
MSD clustering in the ambiguity classes, we started to
eliminate several attributes in the MSD codes that would
reduce the cardinality for the MSD ambiguity classes. If
one thinks an MSD in terms of a (flat) feature structure,
then this elimination of attributes in a given MSD repre-

sents a generalisation of the corresponding MSD that
would subsume the initial one.

The generalisation process observed the following general
guidelines:
• eliminate the attributes that are unambiguously

recovered by looking up the word in the lexicon;
• eliminate the attributes with little influence on the

distribution of the words in the same POS class;
• eliminate the attributes which do not influence the

graphic form of the words in the given POS class;
• preserve the attributes which correlates in co-

occurring words.

The first step in the tagset design was to keep in the
tagset only the POS information, train the tagger on this
minimal tagset and observe the errors made by the tagger
on a few paragraphs randomly extracted from our corpus.
The errors, signaled in the form of Cata instead of Catb
allowed us to build up the confusion sets for the minimal
tagset:(Cat1 Cat2 ...Catm) instead of Catb. For all the
wrongly marked up words we extracted the context and
identified the attributes that were likely to help the tagger
to make the correct choice. We added these attributes to
the tags, repeated the training and tagging and produced
each time another list of confusion sets. As a result of
this iterated step, each MSD-ambiguity class
(MSD1MSD2...MSDk) was equivalated to a C-TAG ambi-
guity class (tag1 tag2 ... tagi) with i ≤ k and a many-to-one
mapping between MSDs and C-TAGs was defined: MSDn1

MSDn2...MSDnp → tagm (or vice versa a one-to-many
mapping tagm → MSDn1 MSDn2 ...MSDnp). When this re-
peated process stabilised, we checked for the MSD
recoverability degree of a given C-tag annotated text. This
test is very simple and it computes for a token toki disam-
biguated as tagk the intersection between the ambiguity
class of toki and the mapping class of tagk. If this intersec-
tion contains only one element, then the token toki is
fully MSD-recoverable when it is tagged with tagk.
Otherwise, the token toki is considered partially recov-
erable. Defining recoverability degree of a given C-tag
annotated text as the number of fully MSD-recoverable
tokens per total number of tokens, we reached after several
adjustments of the tagset and the dictionary information a
90% recoverability degree of the test corpus. The adjust-
ment of dictionary information consisted in conflating
some interpretations of a few functional words which were
hard to distinguish and removing a few distinctions that
were impossible to be made on a purely statistical and
syntactical basis. The most obvious case was the distinc-
tion between numeral and article readings for the words un
(a/an or one -masculine) and o (a/an or one -feminine). To
identify the numeral readings of these words some seman-
tic criteria would have been necessary (for instance to de-
fine a subclass of nouns “measure unit”), so we decided to
classify them only as articles.

Let us consider a few examples to clarify this methodolo-
gical procedure. For the categories Noun Adjective, the
attributes Case and Number were preserved since when the
latter modifies the former they must agree in Case and
Number. Since in many cases the nouns and adjectives are
ambiguous with respect to these attributes when con-
sidered in isolation, but rarely when considered in colloca-
tion, preserving these attributes proved to be extremely

helpful for the performance of the tagger. On the other
hand, Gender (which also is subject to the agreement re-
quirement) is very rarely ambiguous. The Gender of a
noun, adjective, pronoun, determiner, article, numeral, or
participle is almost always recoverable from the wordform
itself, and in those very rare cases when it is not, the
immediate context (plus the agreement rule) does the job.
We have so far not encountered (in our corpus) a single
instance where this was not the case. Therefore, preserving
the Gender was not relevant and after its removal the
number of tags decreased significantly (and the accuracy of
the tagger increased accordingly). The definiteness attribute
is also fully recoverable from the wordform, but given the
grammatical constraints, keeping it was very useful in
helping the tagger to discriminate among nouns, adjec-
tives and participles (ex: frumosul baiat versus frumosul
baiatului or iubitul baiat versus iubitul baiatului or
baiatul iubit). With the verbs, the distinction was pre-
served between finite (main and auxiliary) verbs nonfinite
verbs (infinitive, participle and gerund). The finer distinc-
tion between main and copulative uses (valid for a few
verbs) was a constant source of tagging mistakes so we
removed it from our lexical encoding, and consequently it
disappeared from the tagset. For the finite verbs the at-
tribute Person was preserved and just only for the
auxiliaries the Number attribute was kept. Eliminating the
tense attribute dramatically decreased the number and the
cardinality of the ambiguity classes. Eliminating the
Mood attribute further decreased the number and the cardi-
nality of the ambiguity classes.

The most troublesome categories were the pronoun and
the determiner (this class contains what grammar books
traditionally call adjectival pronouns and due to several
commonalties it was merged with the pronominal class).
As with the nominal categories, we opted for preserving
the Case and Number attributes. However, with only these
two attributes the tagset design methodology classified
most of the pronominal MSDs into functionally and dis-
tributionally unrelated classes. The only exceptions were
the reflexive pronouns and determiners in accusative or da-
tive, which clustered together (they are explicitly marked
for these cases and are insensitive to number). The next
step was to consider the types of pronominals and deter-
miners in the classification. With this new feature, the
number of tags remained the same, but their recoverability
degree slightly improved and the clustering of MSDs was
more linguistically motivated.

Similar considerations applied for all the other word
classes and the resulted tagset (initially 73 proper tags and
10 punctuation tags) was used in a more comprehensive
evaluation of the tagging process. The evaluation of the
tagger performance (described in another section below)
was done on a larger text by two independent experts.
Based on the insights gained from the analysis of the er-
rors, the tagset was slightly modified (79 proper tags and
10 punctuation tags) and some dictionary entries were
changed. The final tagset and dictionary modifications are
discussed in the section on Evaluation.

The Training Corpus
The training corpus (CTAG-corpus) was obtained from the
MSD-tagged corpus by substituting the MSDs with their
corresponding corpus tags (using the MSD to C-tag

mappings described in the previous section). The figure
below shows a sample of the CTAG corpus (based on the
final tagset, discussed in the next section). Although the
two texts2 contain altogether more than 250.000 words,
the number of different words is just 20,384 (less than 6%
of the number of wordforms in the lexicon). However, for
the distributional analysis and morpho-syntactical disam-
biguation purposes the selected texts offer enough evi-
dence to extract reliable data and draw realistic conclu-
sions. Out of the 611 MSDs defined in the lexicon, these
texts contain 444 MSDs (72.66%). From the 869 MSD-
ambiguity classes, these two texts contain 620 (71.13%).
This is to say that most of the words raising ambiguity
problems appeared at least in one of the two texts.

Într- S
 o TSR
zi NSRN
senină ASRN
şi CVR
friguroasă ASRN
de S
aprilie NSN
, COMMA
pe S
când R
ceasurile NPRY
băteau V3
...

Figure 4: C-TAG corpus overview

The Training Process
Out of the training corpus, 90% was retained for the
proper training and the rest of 10% (the first parts of both
1984 and The Republic) was used for the validation pur-
poses. The training process is merely are formatting exer-
cise. The data contained in the training corpus is sorted
and filtered twice, once to extract the lexicon (if it does
not exist already) and once for the tag trigrams. The ex-
traction of the relevant information is done mostly with
standard Unix text processing tools and two special pur-
pose programs. As the final step, the three letter word-
endings are extracted from the lexicon and a ‘guess list’ is
created from them. This guess list is used as a guesser
resource unless another guesser is installed (see above).

The tagger is ready for use with the new resources as soon
as the data files are accessible to the server program. The
output format of the tagger is a vertical text with all
possible tags; the tags are assigned a probability value and
they are sorted, so that the most likely tag comes first (see
example below3).
...
o [TSR:-4.799][PPSA:-7.101][QF:-9.839][VA3S:-11.481][I:-11.886]
zi [NSRN:-1.066][V2:-10.669]
...

2 To cope with unknown words, additional sentences were
introduced in the corpus so that all the ambiguity classes
corresponding to the endings used by the guesser be taken
into account when constructing the language model.
3 The scores are expressed as logarithms, so the smaller the
(signed) value of the assigned score, the smaller the
probability.

This allows expressing a judgment on the confidence with
which the tag has been assigned: if the probability
difference between the first tag and the next tag(s) is com-
paratively large (as it is for zi in the example above), the
decision is more certain than in case of near equal proba-
bilities. Apart from assessing the confidence, this can also
be used as a starting point for manual correction of the
text, as those words with similar probabilities are more
likely to contain errors. The evaluation with Romanian
data has shown that with most errors the difference be-
tween the wrongly assigned tag and the correct tag was
rather small, whereas it was much bigger with correctly
assigned tags.

Evaluation and the final tagset
The tagger was trained and evaluated several times on
different segments of the hand-disambiguated corpus with
various results. This was against our expectations so we
made a pretest, training the tagger on the whole corpus
and running it on the same data. As one would expect, the
accuracy was very high, but the error analysis confirmed
one of our suspicions: out of the reported errors there were
almost 500 (non-systematic) errors (189 in “1984” and
301 in “The Republic”) made by the human disambigua-
tors in the process of building up the MSD-tagged corpus.
The tags attributed by the tagger were in all these cases
the correct ones. They were corrected, the tagger retrained
and the test redone. With data corrected, there were reported
a few more human errors (8 in “1984” and 11 in “The
Republic”). A third trial of this test didn’t revealed new
human-made errors (but there is of course no certainty that
they were all discovered) so, the tagger was trained on
three texts, building three language models. The first
training was done on 90% of “1984“, the second on 90%
of “The Republic” and the third on the concatenation of
the texts used in the first two (90% of each of the two
books). The resulting language models were used to test
the corresponding unseen 10% of the texts. The error
analysis suggested some modifications of the tagset and of
a few entries in the dictionary.

data /LM no. of
words

no. of
errors

accuracy

10% 1984 / 90% 1984 LM 11791 257 97.82%
10% Republic /90% Rep LM 13696 533 96.10%
10% 1984 and Republic /
90%(1984+Rep) LM

25487 1112 95.63%

Figure 5: Initial tagging results

The basic test on the unseen part of the training corpus
provided the results shown in Figure 5.

As shown in the previous sections, the tagger output is a
tabular format with each word on a line followed by an or-
dered list of pairs [tag:probability]. The above mentioned
accuracy was measured considering only the tag with the
highest probability. In case the tagger was definitely
wrong (that is the probability of the chosen tag was much
larger than the probability of the correct one) we manually
modified the MSD and the corresponding tag. This
happened for instance with the word-forms si and si-
which in the lexicon are listed as reflexive pronoun
(himself/herself), conjunction (and) and adverb (still, yet).

While the reflexive pronoun reading was almost always
correctly assigned, the other two interpretations (C and R)
were constantly confused. This distinction is in many
cases very difficult to be made even by native speakers, so
we merged them into one tag CVR (to be read as conjunc-
tion with adverbial instances). Another example is given
by the word fi, initially encoded in the lexicon as an in-
finitive (to be) and as an aspectual particle. Since the par-
ticle reading rarely has been correctly identified by the
tagger and since this is a very frequent word in Romanian,
its “contribution” to the errors list was significant (4.28%
of all the errors). We removed from the lexicon the
particle interpretation leaving only the one for infinitive
(what most grammar books would do), thereby removing
this source for errors. Another follow-up modification of
the tagset was to make a distinction among the particles
(QN, QS, QF) initially conflated into one tag (Q). This
distinction eliminated several errors (such as distinction
between auxiliary and main usage of some verbs).
Furthermore, making a distinction (which the initial
tagset did not have) between proper nouns and common
nouns helped in reducing tagging errors of the word “lui”
which is always a genitival article when precedes a proper
noun, as opposed to being a pronoun otherwise (which is
by far the most probable tag). Another problem was made
by the initial tag ASRN which was meant for adjectives,
singular, direct case, indefinite. By analysing all the
MSDs that were mapped to this tag we noticed that they
identified only feminine adjectives, although we didn't
mean to preserve the gender distinction in our tagset. This
tag was in most cases mistakenly preferred to the more
general tag ASN (adjectives, singular, indefinite). Again,
by observing the MSDs mapped onto the ASN tag, we
noticed only singular, masculine, indefinite adjectives
which are Case undetermined. Therefore, a natural decision
was to conflate the ASRN and ASN tags. This decision
eliminated tagging errors for those few but frequent adjec-
tives which have identical forms for both masculine and
feminine gender when singular or indefinite (for instance
“mare“-big). The actual tagset is briefly described below.

A Adjective
AN Adjective, indefinite
APN Adjective, plural, indefinite
APON Adjective, plural, oblique, indefinite
APOY Adjective, plural, oblique, definite
APRY Adjective, plural, direct, definite
ASN Adjective, singular, indefinite
ASON Adjective, singular, oblique, indefinite
ASOY Adjective, singular, oblique, definite
ASRY Adjective, singular, direct, definite
ASVN Adjective, singular, vocative, indefinite
ASVY Adjective, singular, vocative, definite
C Conjunction
CVR Conjunction or Adverb
I Interjection
M Numeral
NP Proper Noun
NN Common Noun, singular
NPN Common Noun, plural, indefinite
NPOY Common Noun, plural, oblique, definite
NPRN Common Noun, plural, direct, indefinite
NPRY Common Noun, plural, direct, definite
NPVY Common Noun, plural, vocative, definite
NSN Common Noun, singular, indefinite

NSON Common Noun, singular, oblique, indefinite
NSOY Common Noun, singular, oblique, definite
NSRN Common Noun, singular, direct, indefinite
NSRY Common Noun, singular, direct, definite
NSVN Common Noun, singular, vocative, indefinite
NSVY Common Noun, singular, vocative, definite
NSY Common Noun, singular, definite
PI Quantifier Pronoun or Determiner
PXA Reflexive Pronoun, accusative
PXD Reflexive Pronoun, dative
PSP Pronoun or Determiner, poss or emph. plural
PSS Pronoun or Determiner, poss or emph, singular
PPPA Personal Pronoun, plural, acc., week form
PPPD Personal Pronoun, plural, dative
PPSA Personal Pronoun, singular, accusative
PPSD Personal Pronoun, singular, dative
PPSN Personal Pronoun, singular, nom., non-3 person
PPSO Personal Pronoun, singular, oblique
PPSR Personal Pronoun, singular, direct
PPPO Personal Pronoun, plural, oblique
PPPR Personal Pronoun, plural, direct
RELO Pronoun or Determiner, relative, oblique
RELR Pronoun or Determiner, relative, direct
DMPO Pronoun or Determiner, dem., plural, oblique
DMSO Pronoun or Determiner, dem., singular, oblique
DMPR Pronoun or Determiner, dem., plural, direct
DMSR Pronoun or Determiner, dem., singular, direct
QN Infinitival Particle
QS Subjunctive Particle
QF Future Particle
QZ Negative Particle
R Adverb
S Preposition
TP Article, indefinite or possessive, plural
TPO Article, non-possessive, plural, oblique
TPR Article, non-possessive, plural, direct
TS Article, definite or possessive, singular
TSO Article, non-possessive, singular, oblique
TSR Article, non-possessive, singular, direct
V1 Verb, main, 1st person
V2 Verb, main, 2nd person
V3 Verb, main, 3rd person
VA1 Verb, auxiliary, 1st person
VA1P Verb, auxiliary, 1st person, plural
VA1S Verb, auxiliary, 1st person, singular
VA2P Verb, auxiliary, 2nd person, plural
VA2S Verb, auxiliary, 2nd person, singular
VA3 Verb, auxiliary, 3rd person
VA3P Verb, auxiliary, 3rd person, plural
VA3S Verb, auxiliary, 3rd person, singular
VG Verb, gerund
VN Verb, infinitive
VP Verb, participle
X Residual
Y Abbreviation

data /LM no. of
words

no. of
errors

accuracy

10% 1984 /90% 1984 LM 11791 189 98.39%
10% Republic/90% Rep LM 13696 393 97.13%
10% 1984 and Republic/
90%(1984+Rep) LM

25487 963 96.22%

Figure 6: Final tagging results

The tagger evaluation was repeated for this final tagset and
the results (which improved significantly) are shown in
the table in Figure 6.

A Complexity Metric for Tagging
Experiments

The performance of a tagger is usually measured in the
percentage of correct tag assignments. While this initially
sounds quite plausible, it does not say very much about
the quality of the tagger. There are parameters that influ-
ence the performance which are not taken into account by
a single percentage figure. We propose the complexity of
a text as an additional qualifying parameter to put the per-
centage score into the right perspective.

One simple measure is calculated as the average number of
tags per word, i.e. the sum of all possible tags for all
words, divided by the number of words. A text with a re-
sulting score of 1.0 is therefore trivial to tag, as each word
only has one possible tag. A better measure would be to
disregard punctuation as this is almost always assigned a
unique tag. An even better measure would consider only
the ambiguous words, that is dropping any item (word or
punctuation) that is uniquely labeled by the look-up (or
guessing) procedure. For instance, the 3 scores for the
texts used in the experiment reported here are shown in the
table below:

Score SM NPM AM
1984 1.55 1.60 2.49
Republic 1.63 1.72 2.37

Figure 7: Different measures of text ambiguity

SM (Simple measure) = number of tags/number of tokens
NPM (Non-Punctuation Measure) = number of non-
punctuation tags/ number of non-punctuation tokens

AM (Ambiguity Measure) = number of tags assigned to
ambiguous tokens/ number of ambiguous tokens.
The complexity of a text to be tagged is strongly depen-
dent on the tagset used in the tagger: Q= Q1*Q2, where:
Q1 is one of SM, NPM or AM above and
Q2 = Σ(1-pMLi)/(ε+Ntoken)
Ntoken is the number of tagged tokens in a text. Depending
on the measure adopted as Q1, this number would be the
number of all tokens, the number of non-punctuation
tokens or the number of ambiguous tokens.
pMLi is the most probable tag of wordi (lexical probability)
ε is a small, non-zero, constant.

This measure for the complexity of a text would assign a
zero value for texts with no ambiguous items. For unam-
biguous words, their contribution in the summation
would be 0, while very probable tags would have a very
small contribution. The metrics above has also the advan-
tage that ponders the average ambiguity. This is relevant
in those texts/languages which have few highly ambigu-
ous words (say 10 different tags) but a lot of unambiguous
words, which may be contrasted with texts/languages
where most words are ambiguous (3-4 different tags). The
first case should be easier for the tagger and the proposed
metrics takes it into account. In the table above, one can
see that the AM measure is higher for “1984” than for

“The Republic” (SM and NPM are lower). This was be-
cause more ambiguous words were used in Plato’s text and
although the average number of tags for each ambiguous
words is smaller than in the case of “1984”, the difficulty
of “The Republic” excerpt was corrected by the Q2 term
in the evaluation of Q. With any of the three measures
adopted for Q1 above, the complexity of the test texts
extracted from “The Republic” was higher than the texts
extracted from “1984”. This difference in complexity
explains why the tagging results are better for the latter.

The text complexity is a useful parameter for estimating
the accuracy with which the given text is expected to be
tagged. For an “easy” text, one can use simple taggers,
but for “difficult” texts a “more advanced” tagger should be
necessary. We define the IQ of a tagger based on the num-
ber of cases when it made a non-trivial choice:

IQ = 100*Σ(pREAL_i - pML_i)/Ntoken

where pML_i and Ntoken are the same as before, and pREAL_i is
the lexical probability of the really selected tag in case of
tokeni. As one can notice, the tagger is not given credit
for the unambiguous words. The same goes for those
cases where the selected tag is the most likely one. The
normalisation is necessary to cope with texts of different
length used in different experiments.

Conclusions
It has been shown that it is quite easy to adapt a language
dependent probabilistic tagger to work with data from
other languages as well. Due to the way the resource files
are created the training process is extremely fast. A
client/server architecture provides an ideal framework for
programs that require large linguistic resources, and the
client implementation in Java means that it is possible to
run the tagger on a wide variety of platforms. With a
comparatively small amount of training data it is possible
to reach quite impressive results.

The empirical methodology we described for deriving a
convenient tagset (i.e. informative enough, manageable
for the tagger and recoverable for a tiered tagging
approach) from a large set of morpho-syntactic description
codes proved to be successful. An old misconception,
namely that highly inflected languages are doomed to poor
performances when processed with probabilistic methods
has been shown to be completely wrong. In fact, we do
believe that a highly inflected language has better chances
for being tagged accurately that other languages. The mo-
tivation is based on the fact that inflected words are less
ambiguous than the base forms and in many cases they are
simply unambiguous. Therefore, unambiguous words
would act as tagging islands/clues for the rest of the words
in the text. This way the number of possibilities to be
considered in finding the most probable tags assignment is
significantly reduced.

We proposed a measure for the complexity of a text to be
tagged and an IQ figure a tagger. The complexity of texts
varies not only across the languages but more often than
one would expect within the same language. This
complexity value might influence the choice of tagging
engine to be used for disambiguating.

Acknowledgments
The work reported here was initiated as a joint experiment
between Romanian Academy and Birmingham University
within the TELRI Copernicus Concerted Action (Mason
& Tufis, 1998), based on language resources developed
under Copernicus Joint Project “MULTEXT-East”
(Orwell’s “1984”) and TELRI Copernicus Concerted
Action (Plato’s “The Republic”). Given the very
promising results, the continuation of the work was
further granted by the Romanian Ministry of Science and
Technology.

References
Abney, S.(1997): Part-of-Speech Tagging and Partial

Parsing. In Young, S., Bloothooft, G. (eds.) Corpus
Based Methods in Language and Speech Processing
(pp. 118-136) Text, Speech and Language Technology
Series, Kluwer Academic Publishers

Baayen, H., Sproat, R. (1996): Estimating Lexical Priors
for Low-Frequency Morphologically ambiguous Forms
in Computational Linguistics, vol. 22, no. 2 (pp. 155-
166), June 1996

Berger, A., L., Della Pietra, S., A., Della Pietra, V., J.
(1996): A Maximum Entropy Approach to Natural
Language Processing in Computational Linguistics,
vol. 22, no. 1 (pp. 39-72), March 1996

Elworthy, D. (1995): Tagset Design and Inflected
Languages, Proceedings of the ACL SIGDAT
Workshop, Dublin, (also available as cmp-lg archive
9504002)

Mason, O., Tufis, D. (1998, to appear): Probabilistic
Tagging in a Multi-lingual Environment: Making an
English Tagger Understand Romanian Proceedings of
the Third International TELRI Seminar, Montecatini,
October 1997

Tufis, D. (1998): Tiered Tagging. In International Journal
on Information Science and Technology, vol. 1, no. 2,
Editura Academiei, Bucharest, 1998

Tufis, D. (1997): A Generic Platform for Developing
Language Resources and Applications, in Proceedings
of the Second International TELRI Seminar (pp. 165-
184) Kaunas, April 1997

Tufis, D., Barbu, A.M., Patrascu, V., Rotariu, G.,
Popescu, C. (1997):Corpora and Corpus-Based Morpho-
Lexical Processing in Tufis D., Andersen P.(eds.):
Recent Advances in Romanian Language Technology,
Editura Academiei (pp. 35-56), Bucharest, 1997

Tzoukermann, E., Radev, D. (1997): Tagging French
Without Lexical Probabilities - Combining Linguistic
Knowledge and Statistical Learning cmp-lg/9/10002, 10
October, 1997

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L.,
Palmucci, J. (1993): Coping with Ambiguity and
Unknown Words through Probabilistic Models in
Computational Linguistics, vol. 19, no. 2 (pp. 219-
242), June 1993

