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Designing and applying an ML method for automatic identification and 
classification of morphosemantic relations (MSRs) between verb and 
noun synset pairs in the Bulgarian WordNet (BulNet) based on:

❖ semantic primes in PWN 3.0 (Miller 1996)
❖ MSR data from PWN 3.0 (Fellbaum et al. 2009)
❖ MSR in Bulgarian – a morphologically rich language (Koeva 

2008, Leseva et al. 2014)
❖ derivational patterns in Bulgarian (Dimitrova et al. 2014).

The Task



Morphosemantic Relations

➢ Adding derivational and morphosemantic relations that account 
for the derivational morphology in various languages;

➢ Cross-lingual transfer of MSRs.

Turkish (Bilgin et al., 2004); Czech (Pala & Hlavackova, 2007); Bulgarian (Koeva, 2008; 
Stoyanova et al., 2013; Dimitrova et al., 2014); Serbian (Koeva et al., 2008); Polish (Piasecki 
et al., 2009, Piasecki et al., 2012a; Piasecki et al., 2012b); Estonian (Kahusk et al., 2010); 
Romanian (Barbu Mititelu, 2012; Barbu Mititelu, 2013); Croatian (Sojat & Srebacic, 2014).



Morphosemantic Relations

Here we consider MSRs which link verb–noun pairs of synsets:
➢ The synset pairs contain derivationally related literals;
➢ There is a semantic relation between the synsets which inherits 

the semantics of the derivational relation between the literals.

The PWN specifies 14 types of MSRs between verbs and nouns:
Agent By-means-of Instrument Material
Body-part Uses Vehicle Location
Result State Undergoer Destination
Property Event



Morphosemantic Relations

teach:1 ~ teacher:1 ‘a person whose occupation is teaching’  Agent

debug:1 ~ debugger:1 ‘a program that helps locating and correcting 
programming errors’  Instrument

arrange:5 ~ arrangement:2 ‘an orderly grouping; the result of arranging’ 
Result

  Example



Key points

❖ Derivational relations connect literals.

BUT

➢ Semantic and morphosemantic relations refer to concepts.
➢ Thus, MSRs are transferred from literals to entire synsets.
➢ Also, semantic relations are universal, and must hold in any 

language, regardless of whether they are morphologically 
expressed or not.



Key points

➢ Princeton WordNet 3.0 contains 17,740 (literal-to-literal) MSRs 
linking 14,476 unique synset pairs.

HOWEVER
➢ Part of the derivationally related verb–noun pairs of synsets in the 

PWN 3.0 are not labelled with an MSR.
➢ The MSRs are based on English derivational morphology.
➢ Bulgarian is a morphologically rich language with a large variety of 

derivational patterns and thus offers a potential source of 
morphosemantic information.



Objectives

The method involves: 
➢ Identification of potential DRs – by identifying common 

substrings shared by verb–noun literal pairs and mapping the 
resulting endings to canonical suffixes.

➢ Determination of whether a derivational relation exists between 
a pair of potentially related literals or the mapping is the result 
of a formal coincidence;

➢ Classification of MSRs – determining what type of MSR links the 
corresponding synsets provided a DR exists.



Focus on Bulgarian

➢ Currently, the Bulgarian Wordnet comprises over 121,000 
synsets and over 249,200 literals,  linked with approx. 256,213 
relations. 

➢ Over 63,000 synsets and approx.130,000 literals have been 
either created or verified by experts.

➢ The manual validation of the automatically generated synsets 
includes validation, correction and supplementation of literals, 
glosses, examples.



➢ There are 8,219 derivationally related (marked as such) verb–noun 
pairs in BulNet with no MSR assigned:

{podvarzvam:1} ({bind:7}) – {podvarzvachnitsa:1} ({bindery:1}) 

➢ Other derivationally related pairs are not linked by a DR but are 
potential candidates:

{podvarzvam:1} ({bind:7}) – {podvarzvach:1} ({bookbinder:1}) 

➢ The results and methodology are transferable across languages

Focus on Bulgarian



Semantic primes may be used to disambiguate (fully or partially) 
the types of MSRs for a given suffix:

polivach:1 (waterer:1); prime: noun.person → MSR: Agent

rezach:1 (cutter:6); prime: noun.artifact → MSR: Instrument//Vehicle*

prehvashtach:1 (interceptor:1); prime: noun.artifact→MSR: 

Instr//Vehicle* (Further restriction on Vehicle – a noun.artifact that is a hyponym of {vehicle:1})

privezhdach:1 (adductor:1); prime: noun.body → MSR: Body-part

Example  -ach/-yach

Linguistic Motivation

* Partially disambiguated



A couple of dependencies were taken into account:
➢ Verb suffix ~ Noun suffix: DR  pisha - pisatel  ~ +DR
➢ DR ~ MSR:  -a → -tel ~ Agent, Instrument, Vehicle
➢ Noun suffix ~ MSR: -ach/-yach ~ Agent, Instrument, Vehicle, 

Body-part (but not Event, or Result)
➢ Noun suffix ~ semantic prime: -tel ~ noun.person, noun.artifact, ... 
➢ MSR ~ semantic prime: Agent ~ noun.person, noun.group, noun.

animal

Linguistic Dependencies



The Method

➢ А supervised machine learning method for MSR identification and 
classification.

➢ Based on the RandomTree algorithm (decision tree based on 
selection of features). OneR (frequency-based) used as baseline.

➢ Implemented in Java with the use of the Weka package.
➢ We tested different sets and combinations of features for ML.
➢ The proposed method, apart from the derivational processes and 

means, is language independent.



Machine Learning: Features

Machine Learning is based on the following features:
➢ Canonical noun suffix (121)
➢ Canonical verb suffix (44)

zashtitnik:2 → nik  (canonical) zashtitya:5 → a (canonical)

defender defend ‘protect against a challenge or attack’

noun.person verb.competition

Data instance: nik, a, noun.person, verb.competition - LABEL: Agent

 Example  

➢ Semantic prime of the noun (25)
➢ Semantic prime of the verb (15)



Machine Learning: Training Data

The core training dataset comprises a total of 6,641 literal pairs in 
4,016 unique synset pairs, and was compiled in two stages:

❖ 6,220 instances of verb–noun literal pairs with DR in BulNet, 
assigned an MSR by automatic transfer from the PWN.

❖ 421 derived by exploring gloss similarities (the Gloss Corpus).

polivam:1   ← possible DR → polivach:1 ‘someone who ...VERB…’

water:1 waterer:2 → MSR: AGENT

Gloss: ’someone who waters:1 plants or crops’ (disambiguated PWN glosses)

 Example  



Compilation and Improvement of Data
Assignment of DRs

The DRs had been assigned to the Bulgarian WordNet:

➢ Literals between which a derivational relation might exist are 
automatically linked using a string similarity algorithm combined 
with heuristics (Dimitrova et al. 2014).

➢ All DRs were manually verified and post-edited.



➢ Disambiguation of multiple morphosemantic relations between 
a unique pair of verb–noun synsets.

➢ Validation of semantic primes.

➢ Cross-check of the consistency between a semantic prime and 
a morphosemantic relation.

 

Compilation and Improvement of Data
Improvement



450 cases of 2 (rarely 3) relations / 50 combinations of relations.

Semantically incompatible MSRs: Agent and Event, Agent and 
Undergoer, Agent and Instrument

Semantically overlapping MSRs: Instrument and Uses, Instrument and 
By-means-of, Instrument and Body-part

Choose the one that is consistent with the prime and is more 
informative. 
e.g. noun.body is more consistent with Body-part than with Instrument. 

Compilation and Improvement of Data
Disambiguation of Multiple MSRs



We analysed manually the cases where hyponyms have different 
semantic primes from their immediate hypernym:
➢ The most variation in the semantic primes of the noun synsets 

down a hypernym–hyponym tree is observed with: noun.state 
(16 other primes); noun.attribute (15); noun.group (14); etc.

➢ The primes of 33 nouns labeled as noun.Tops were changed to 
the predominant prime among their hyponyms;

➢ 66 hyponyms’ prime labels were aligned with those of their 
immediate hypernym;

Compilation and Improvement of Data
Validation of Semantic Primes



➢ many hypernym–hyponym trees in which the semantic primes shift 
along the tree path

e.g., pina cloth:1 (’a fine cloth made from pineapple fibers’), noun.substance, is a 
hyponym of fabric:1 (’artifact made by weaving or felting or knitting or crocheting 
natural or synthetic fibers’), noun.artifact; 
➢ some synsets linked to two hypernyms inherit the semantic prime of 

one of the two
e.g., prednisolone:1 (’a glucocorticoid used to treat inflammatory conditions’), 
noun.substance, which is hyponym of both glucocorticoid:1, noun.substance, AND 
antiinflammatory drug:1, noun.artifact.

Compilation and Improvement of Data
Validation of Semantic Primes



➢ To ensure the consistency of the training data we examined the 
combinations of noun primes and MSRs in the PWN 3.0 with a 
view to the semantic restrictions and in some cases MSRs were 
modified accordingly. 

➢ The changes are available at: http://dcl.bas.bg/wordnetMSRs/.
 

Compilation and Improvement of Data
Cross-check of MSRs and Semantic Primes



The MSRs associated with a given semantic prime were reduced: 
✓ Agent from 17 to 4 (person, animal, plant, group); 
✓ Instrument – from 9 to 3 (artifact, communication, cognition); 
✓ Material – from 6 to 2 (artifact, substance);
✓ State – from10 to 5 (state, feeling, attribute, cognition, communication);
✓ Body-part – from 4 to 3 (body, animal, plant); 
✓ Event – from 24 to 13 (act, communication, attribute, event, feeling, cognition, 

process, state, time, phenomenon, group, possession, relation). 
✓ Result, Property, By-means-of, Uses, Location, and Undergoer are more 

heterogeneous and few of the semantic primes were ruled out. 
✓ Vehicle and Destination  didn’t need any changes.
 

Compilation and Improvement of Data
Cross-check of MSRs and Semantic Primes



Negative examples dataset was extracted automatically: pairs of 
noun - verb synsets with possible DR but
(1) mutually exclusive semantic primes 

E.g. verb.weather – noun.animal 
(2) formal coincidence of forms

E.g. gotvya:2 (cook:1); prime: ‘verb.change’ 
   gotvya:4  (prepare:6); prime: ‘verb.creation’  (metaphorical)
  →   gotvach:1 (cook:6); prime: ‘noun.person’ MSR only with gotvya:2
E.g. lampa:1 (lamp:1) lamtya:1 (crave:1) coincidence of forms
  →  no MSR

 

Compilation and Improvement of Data
Negative Examples



Experiments

✓ Experiment 1: 2-step classification
(1) a binary classifier to determine whether there is an MSR, and then
(2) a multiclass classifier to assign a particular relation to the pair.

+ Relies on the fact that these are separate, independent tasks
+ May discover MSRs not covered by the 14 MSR classes
- Uses different training datasets (and different category labels) on 

each step
- Error propagates

F1=0.682



Experiments

✓ Experiment 2: a single classifier with 15 classes – the 14 MSRs and 
the class ‘null’  to label instances with no MSR.

+ Reduces error compared to Experiment 1
+ Uses one training dataset
- Random selection of negative examples: other selection procedures 

may improve results

F1=0.769



Experiments

✓ Experiment 3: complex classifier combining a set of separate binary 
classifiers for each type of relation: there is a binary classifier (‘true’/’
false’) for Agent, another for Undergoer, etc. Instances labelled as 
‘false’ by all classifiers are considered without MSR.

+ Independently trains a classifier for each MSR (more precise 
classifiers, e.g. for Agent, are not affected by less precise, e.g. Event)

+ Less dependent on the amount of data (for less represented MSRs)
+ Allows assignment of more than one MSR (overlapping MSRs)
- Requires separate training sets



Evaluation

Experiment 3 results on unknown 
data:
(i) 64% exact matches;
(ii) 3.33% - real class is contained 
in the set of guessed relations; 
(iii) 28.33% - labelled as null while 
in fact they have an MSR - further 
reclassified;
(iv) 4.33% - incorrectly assigned 
relations.Table: F1 score on the 10- fold cross-

validation in Experiments 1-3. 



Conclusions

➢ A more fine-tuned method and feature design, as well as 
training on different sets/features in each phase, makes 
method more effective.

➢ Techniques for reducing redundant features are needed, as 
well as for correlation-based feature selection, feature ranking 
or principal component analysis.

➢ An additional classifier and several learning schemes may lead 
to objective conclusions by merging the results.



Future Work

➢ Enhancement of the method  by:
✓ exploring automatic harvesting of more labelled data from 

other wordnets; 
✓ exploring incorporation of new features for classification 

and assignment of relations including heuristics derived 
from the WordNet structure. 

➢ Developing techniques for reducing redundant features, e.g. by 
correlation-based feature selection, feature ranking, etc.

➢ Testing the method for other languages.
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