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1. Introducere 

Acest livrabil prezintă o sinteză a articolelor publicate în anul 2020, pagina web a proiectului 

și o serie de demonstratoare online pentru adaptarea vocii sintetice la stilul și expresivitatea unui 

nou vorbitor, respectiv adaptarea rapidă a vocii sintetice folosind date audio atipice. Aceste 

rezultate demonstrează că prin utilizarea arhitecturilor de rețele neuronale profunde de tip 

Tacotron și DC-TTS se obține o calitate înaltă a vocii sintetice pentru vorbitori în limba română, 

calitate comparabilă cu rezultate de dată foarte recentă raportate la conferința internațională 

Interspeech 2020 și la competiția internațională Voice Conversion Challenge 2020. De 

asemenea, se prezintă referințe către paginile web ale demonstratoarelor online și tematici de 

cercetare în care au fost implicați și studenții pe durata stagiului de practică sau a elaborării 

proiectelor de diplomă.    

 

2. Identificarea posibilităților de publicare pe anul 2020 și realizări 

Conform cu strategia de diseminare inclusă în formularul de aplicație, pentru fiecare an 

calendaristic s-au identificat posibilitățile de diseminare și de publicare de articole la conferințe 

științifice sau în jurnale. 

Pentru anul 2020 s-au identificat următoarele posibilități de publicare la conferințe 

internaționale: 

• 2020 ISCA Interspeech, 25-29 Octombrie, Shanghai, China 

(https://interspeech2019.org/) -  online 

• 2020 IEEE 16th International Conference on Intelligent Computer Communication and 

Processing, Cluj-Napoca, 3-5 Sept 2020, Cluj-Napoca, Romania (www.iccp.ro) 

• The 15th Edition of the International Conference on Linguistic Resources and Tools 

for Processing Romanian Language, 14-16 Decembrie, Bucuresti, Romania 

(https://profs.info.uaic.ro/~consilr/) – online 

• IEEE International Conference – Intelligent Systems, 28-30 August 2020, Varna, 

Bulgaria (https://www.ieee-is.org/) - online 

• 24th International Conference on Knowledge-Based and Intelligent Information and 

Engineering Systems, 16-18 Septembrie 2020, Venetia, Italia 

(http://kes2020.kesinternational.org/) - online 

• 11th Nordic Conference on Human-Computer Interaction, Octombrie 2020, online.  

 

3. Publicații științifice în anul 2020 

Autori Beata Lorincz, Maria Nuțu, Adriana Stan, Mircea Giurgiu 

Titlu „An Evaluation of Postfiltering for Deep Learning Based Speech Synthesis with limited data”  

(https://ieeexplore.ieee.org/abstract/document/9199932)  

Ref. IEEE 10th International Conference on Intelligent Systems (IS), 28-30 August 2020 (online) 

https://interspeech2019.org/
https://profs.info.uaic.ro/~consilr/
https://www.ieee-is.org/
http://kes2020.kesinternational.org/
https://ieeexplore.ieee.org/abstract/document/9199932
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Recently, deep neural network (DNN) based speech synthesis achieved close to human 

speech quality and became the state-of-the art in the field of text-to-speech (TTS) synthesis 

systems. However, a major part of its efficiency comes from the use of large quantity of high-

quality speech recordings. When this data is not available, other approaches are still 

preferred. This paper evaluates the DNN-based postfiltering of the synthesised speech as a 

means to increase the quality of DNN based TTS systems trained on very limited speech 

resources. 20 different systems are compared objectively using the Mel Cepstral Distortion 

measure. The systems differ in terms of: training data, network architecture, and training 

method. Out of the 20 initial systems, 7 are evaluated subjectively in listening tests performed 

for two different speakers. Results show that even when starting from as little as 5 minutes of 

speech recordings, the postfiltering process improves the quality of the synthetic speech 

output. So it can, therefore, be used as a training strategy for TTS systems where sufficient 

high-quality data is not available. 

 

 

Autori Beata Lorincz 

Titlu „Concurent Phonetic Transcription, lexical stress assignment and syllabification with deep 

neural networks” (https://www.sciencedirect.com/science/article/pii/S1877050920318366)  

Ref. Proceedings of the 24th International Conference on Knowledge0Based and Intelligent 

Information and Engineering Systems, KES 2020, 16-18 Septembrie 2020, online. 

R
e
z
u
m

a
t 

This paper evaluates four different sequence-to-sequence deep neural network architectures 

aimed to jointly solve the tasks of: phonetic transcription, lexical stress assignment and 

syllabification. These text processing tasks are considered essential components for high 

quality text-to-speech or automatic speech recognition systems, with the phonetic 

transcription being the most frequently used in these types of applications. Although each of 

the tasks has been individually and extensively analyzed in the scientific literature, there are 

few studies which target a concurrent solution for them. In general, the lexical stress 

assignment and syllabification are used as augmenting input features to the phonetic 

transcription model and not considered as target features.The proposed network architectures 

include recurrent, convolution and attention neural layers and were evaluated on hand-

checked English and Romanian datasets. The accuracy of the models was evaluated in terms 

of accuracy for the concurrent prediction of all three tasks, as well as by discarding the 

syllabification or lexical stress predictions. The best results were obtained with a combination 

of convolution and attention layers, where the accuracy of the joint prediction for the three 

tasks was of 58.96% for English and 86.64% for Romanian. The same model for English 

obtains an accuracy of 59.70% when syllables are discarded and 64% when the prediction of 

lexical stress is ignored. With the same best performing model for Romanian an accuracy of 

88.83% without syllables and 93.84% without lexical stress is obtained. 

 

 

Autori Adriana Stan 

Titlu „RECOApy – Data Recording, Pre-processing and Phonetic Transcription for End-To-End 

Speech-Based Applications”  

(https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1184.pdf)  

Ref. ISCA International Conference Interspeech 2020, 25-29 Octombrie 2020, online. 

https://www.sciencedirect.com/science/article/pii/S1877050920318366
https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1184.pdf
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Deep learning enables the development of efficient end-to-end speech processing 

applications while bypassing the need for expert linguistic and signal processing features. Yet, 

recent studies show that good quality speech resources and phonetic transcription of the 

training data can enhance the results of these applications. In this paper, the RECOApy tool 

is introduced. RECOApy streamlines the steps of data recording and pre-processing required 

in end-to-end speech-based applications. The tool implements an easy-to-use interface for 

prompted speech recording, spectrogram and waveform analysis, utterance-level 

normalisation and silence trimming, as well grapheme-to-phoneme conversion of the prompts 

in eight languages: Czech, English, French, German, Italian, Polish, Romanian and Spanish. 

The grapheme-to-phoneme (G2P) converters are deep neural network (DNN) based 

architectures trained on lexicons extracted from the Wiktionary online collaborative resource. 

With the different degree of orthographic transparency, as well as the varying amount of 

phonetic entries across the languages, the DNN’s hyperparameters are optimised with an 

evolution strategy. The phoneme and word error rates of the resulting G2P converters are 

presented and discussed. The tool, the processed phonetic lexicons and trained G2P models 

are made freely available. 

 

Autori Kristen M Scott, Simone Ashby, Adriana Stan  

Titlu "Designing a Synthesized Content Feed System for Community Radio" 

(https://dl.acm.org/doi/abs/10.1145/3419249.3420177)  

Ref. Proceedings of the 11th Nordic Conference on Human-Computer Interaction, October 2020 

R
e
z
u
m

a
t 

The use of text-to-speech to generate radio content is largely unexplored, despite the 

importance of radio in remote parts of the world, where TTS offers a robust means of 

transforming data into media for low-literate audiences and those without regular internet 

access. How suitable are TTS voices for meeting the expectations of radio listeners and what 

type of content are these voices best suited to deliver? We present an application for 

generating automated daily synthesized weather forecasts for selected locations and 

language varieties, based on the provision of a regularly updated weather data service. We 

present results from a pilot listener study aimed at exploring people’s reactions to this and 

other synthesized audio content, as we begin to explore best practices around the design of 

a synthesized content feed system for community radio. 

 

Articole acceptate spre publicare - Dan Oneață, Alexandru Caranica, Adriana Stan, Horia Cucu, 
”An Evaluation Of Word-level Confidence Estimation For End-to-end Automatic Speech 
Recognition”, IEEE Spoken Language Technology Workshop, 19-22 ianuarie 2021, Virtual. 

Articole în jurnale ISI (în proces de finalizare) 

• Beáta Lőrincz, Elena Irimia, Adriana Stan, ”RoLEX: An extended Romanian lexical dataset 
and its evaluation for predicting concurrent lexical information”,  va fi trimis către IEEE Signal 
Processing Letters în perioada imediat următoare. 

• Beáta Lőrincz, Adriana Stan, Mircea Giurgiu, ”RoNNA: Romanian neural network API”, va 
fi trimis către IEEE Signal Processing Letters în perioada imediat următoare. 

 

4. Lucrări de licență în legătura cu tematica proeictului 

• Ștefana Cîmpean - ”Recunoașterea emoțiilor din vorbire folosind învățarea automată”, lucrare 
de diplomă, iulie 2020. 

• Andreea Sarca - ”Automatic speech recognition system for Romanian using Deep Speech”, 
lucrare de diplomă, iulie 2020. 

• Roxana Marcu - ”Automatic language identification from text”, lucrare de diplomă, iulie 2020. 

• Florin Ciotlăuș - ”Music analysis using BLSTM and CNNs”, lucrare de diplomă, iulie 2020. 

• Cătălin Avram - ”Automatic speaker recognition from SWARA corpus”, lucrare de diplomă, 
iulie 2020. 
 

https://dl.acm.org/doi/abs/10.1145/3419249.3420177


SINTERO                                                                  PN-III-P1-1.2-PCCDI-2017-0818, nr. 73PCCDI/2018 

7 / 10 

 

5. Stagii de practică pentru studenți 

• Georgiana Săracu - „Detecția stărilor depresive pe baza analizei semnalului vocal”, iulie-
august 2020. 

• Vlad Crehul - „Implementation of a Tacotron-based text to speech synthesis system”, iulie-
august 2020. 

• Vlad Crehul - „Testing experiments with Deep Speech automatic speech recognition for 
Romanian”, iulie-august 2020. 

• Bogdan Oros - „Linear regression applied for speech classification”, iulie-august 2020. 

• Ana Gheorghiu - „Analysis of prosodic events for music classification”, iulie-august 2020. 
 

6. Pagini web ale proiectului SINTERO 
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7. Pagini Wiki interne grupului de cercetare cu mostre audio generate de 

diferite versiuni ale sistemelor de sinteză text – vorbire implementare în 

etapa a III-a.  

 

Mostre audio aferente noilor voci din SWARA 2.0 sunt disponibile la adresa: 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/home. 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sisteme%20Tacotron2%20voci%20noi 

 

 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/home
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sisteme%20Tacotron2%20voci%20noi
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https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Date%20atipice 

 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-

TTS%20Date%20expresive%20neexpresive 

 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Date%20lexicale 

 

 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Date%20atipice
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Date%20expresive%20neexpresive
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Date%20expresive%20neexpresive
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Date%20lexicale
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https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-

TTS%20Englez%C4%83%20Singur%20Vorbitor%20Date%20lexicale 

 

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-

TTS%20Englez%C4%83%20Date%20lexicale  

 

8. Concluzii 

Accesul la publicațiile elaborate în anul 2020 este asigurat la adresa 

http://speech.utcluj.ro/sintero/rezultate/. Pagina web are un conținut dinamic, adaptat cu 

realizările din proiect, astfel că pentru această raportare se pot accesa si mostre cu semnal 

sintetic generat de modulul de adaptare la un noi vorbitori, așa cum este prezentat în paginile 

web cu demonstratoarele.  

https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Englez%C4%83%20Singur%20Vorbitor%20Date%20lexicale
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Englez%C4%83%20Singur%20Vorbitor%20Date%20lexicale
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Englez%C4%83%20Date%20lexicale
https://gitlab.utcluj.ro/speech/tts-samples/-/wikis/Sistem%20DC-TTS%20Englez%C4%83%20Date%20lexicale


Proceedings of 2020 IEEE 10th International Conference on Intelligent Systems

An Evaluation of Postfiltering for Deep Learning
Based Speech Synthesis with Limited Data
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Abstract—Recently, deep neural network (DNN) based speech
synthesis achieved close to human speech quality and became
the state-of-the art in the field of text-to-speech (TTS) synthesis
systems. However, a major part of its efficiency comes from the
use of large quantity of high-quality speech recordings. When
this data is not available, other approaches are still preferred.

This paper evaluates the DNN-based postfiltering of the
synthesised speech as a means to increase the quality of DNN-
based TTS systems trained on very limited speech resources. 20
different systems are compared objectively using the Mel Cepstral
Distortion measure. The systems differ in terms of: training data,
network architecture, and training method. Out of the 20 initial
systems, 7 are evaluated subjectively in listening tests performed
for two different speakers. Results show that even when starting
from as little as 5 minutes of speech recordings, the postfiltering
process improves the quality of the synthetic speech output. So
it can, therefore, be used as a training strategy for TTS systems
where sufficient high-quality data is not available.

Keywords—statistical-parametric synthesis; limited data; deep
neural networks; postfiltering; text-to-speech synthesis; Roma-
nian

I. INTRODUCTION

Recently, Tacotron 2 [1] a text-to-speech (TTS) synthesis
system based on deep neural networks (DNN), obtained a
Mean Opinion Score (MOS) rating equal to 4.53. This rating
is very similar to the MOS score for natural speech (4.58 as
reported by the authors of [1]). This result, in conjunction
with multiple other studies of DNN-based speech synthesis
[2, 3, 4, 5, 6, 7, 8, 9], made this approach the new state-of-
the-art paradigm for TTS systems. However, all these systems
require large amounts of high quality speech recordings for
training–over 20 hours of data from a single speaker for most
of the previously cited works. So there is still the issue of
obtaining good TTS systems for languages or speakers where
data is limited. In this case, there are several approaches, such
as that of Lee et al. [10] which grades and filters the available
data to maximize the quality of the output. Another interesting
study for this scenario is that of Sone et al. [11], which
uses a deep relational model to estimate a neural network’s
parameters from the joint distribution of acoustic and linguistic
features.

Yet the most common approach is to fine-tune or adapt
a pre-trained model’s parameters using data from the tar-
get speaker or language [12, 13, 14]. Or to append

speaker/language embeddings to the linguistic/acoustic fea-
tures, so that the model can jointly learn common and dis-
criminative features from the training set [6, 13, 15, 16, 17].

Although not aimed at solving the data limitation problem,
the postfilter presented in [18] could be an alternative solution.
This postfilter is trained to map the synthetic speech generated
by a Hidden Markov Model (HMM) based system into natural
samples by using two DNNs, one operating in the Mel cepstral
domain, and the other in the spectral domain. Other studies
related to this topic are those of Coto-Jimenez and Close [19]
and Muthukumar and Black [20]. Coto-Jimenez and Close
append a deep neural network with long-short term memory
cells as a postfiltering step for HMM-based speech synthesis.
Muthukumar and Black also use a recurrent neural network to
enhance the output of the Clustergen statistical-parametric syn-
thesiser. [21] presents a speaker-adaptive postfiltering method
for statistical parametric speech synthesis using pre-trained
models adapted with limited data to new speakers. A postfilter
implemented with Generative Adversarial Network (GAN) is
proposed by [22] that is used to learn how to discriminate
between synthesised and natural speech. If multi-speaker pre-
trained models are available, with few shot methods good
quality speech can be obtained for the newly added speaker
[23, 24]. To the best of our knowledge, there are no meth-
ods which postfilter the DNN-based speech synthesis output
without adapting existing models to newly added speakers.

Starting from this overview, we address the problem of
developing DNN-based speech synthesis systems with limited
speech data by employing a post-synthesis neural network
trained to learn the mapping between the synthesised acoustic
features and the natural speech features. The method builds
upon previously published studies, and focuses on an ex-
tensive evaluation of several training strategies and network
architectures. 20 different systems are trained and analysed
objectively. Out of the 20 systems, 7 were selected for a
subjective listening test incorporating two different voices.
Both the objective and subjective results illustrate that the
postfiltering method can be successfully applied for building
TTS systems when large quantities of data are not readily
available.

978-1-7281-5456-5/20/$31.00 ©2020 IEEE 437
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Fig. 1. The postfiltering process.

II. POSTFLLTERING SETUP

The scope of our study is to determine a DNN-based
postfiltering method for the DNN-based synthesis, such that
the final speech output of the system is enhanced even when
only limited training data is available. Thus, we employed a
two-step procedure: first, a DNN-based TTS system is trained
with various amounts of data; and second, the output of the
synthesis system is used as input for a postfiltering neural
network. An overview of the process is shown in Figure 1.

In DNN-based TTS systems the general trend, nowadays,
is to use end-to-end architectures which learn to map raw
text-sequences into acoustic representations or waveforms [9].
However, although this training scheme yields very high qual-
ity speech output, it is not well suited for the case of limited
training data, or real-time synthesis. Therefore, in this study,
the synthetic voices are built using the statistical parametric
approach. The text is first converted into a set of discrete
lexical features, including phonetic transcription, lexical stress
assignment, syllabification and part-of-speech tagging, as well
as a set of contextual features, such as left and right phonemes,
number of syllables and words in a sentence, etc. The complete
list of lexical features is based on the common HTS label
format [25]. The lexical features are then paired at frame-level
to an acoustic parametrization. Phone-level time alignments
between text and speech are required, and can be obtained
with forced alignment procedures [26].

For the postfiltering step, the entire training dataset prompts
are synthesised with the respective TTS system, and the output
features are retained. Dynamic Time Warping (DTW) [27] is
then applied to align the synthetic and natural feature vectors.
The resulting aligned pairs of acoustic features represent the
input data for the training of the postfiltering network.

III. EVALUATION

A. Data

The training data consists of the RND1 subset of the
SWARA Romanian speech corpus [28].1 Out of the 17 speak-
ers, we chose 8 female ones: BAS, CAU, EME, DCS, DDM,
HTM, PMM and SAM. As the corpus data does not contain
purposely built test sets, two other female speakers: BEA and
MAR were additionally recorded and added to the training set.
The prompts were the same as for SWARA speakers, and the
recordings took place in similar studio conditions. None of the
speakers in the combined dataset are professional speakers.

1Available online: speech.utcluj.ro/swarasc/

The data is sampled at 48kHz with 16bps, and it was
manually segmented at utterance-level. Phoneme state-level
alignments were obtained from an iteratively trained HMM-
based forced aligner, similar to the first step from the ALISA
tool [26]. The aligner used 100 utterances from each speaker.
No evaluation of the alignment accuracy was carried out.

B. Synthesis systems

The DNN-based TTS systems followed the Blizzard Chal-
lenge 2017 Merlin baseline system setup [29, 30]. Linguistic
features were derived with an updated version of the Romanian
TTS front-end described in [31].2 Acoustic features were
extracted with the WORLD vocoder [32], and comprised 59
plus the 0th Mel generalised coefficients, 5 band aperiodicity
coefficients and a fundamental frequency (F0). The acoustic
features were augmented with their delta and delta-delta val-
ues. The network architecture consists of 6 layers with 1024
nodes each. The system is trained using the tanh activation
function and the stochastic gradient descent optimizer. A
separate network with similar architecture is trained to predict
the duration of the phoneme states. The postfiltering uses the
same set of acoustic features extracted with WORLD, and a
baseline network architecture as the one described in [33].

For the evaluation to provide a correct overview over the
effectiveness of the postfiltering, we trained 20 different syn-
thesis systems using the BEA data. The systems use different
training strategies, quantities of training data, and types of
postfiltering network architectures. Their details are presented
next.

The training strategy analyses: simple DNN-based TTS
systems trained on linguistic-to-acoustic pairs of features
(ID:M);3 TTS system plus DNN postfiltering trained on
synthesised-to-natural acoustic feature pairs (ID:M* PF);4

and DNN speaker adaptation, where an initial eigen voice is
trained from the data of all the speakers, and then the network
weights are fine tuned for a target speaker (ID:SPKA).

The amount of training data for the TTS system was set
to: 50 utterances (approx. 5 minutes), 100 utterances (approx.
10 minutes), and 500 utterances (approx. 50 minutes). In the
postfiltering step we also selected 50, 100 or 500 utterances.
The postfiltering utterances were the same as those used
to train the correspondent TTS system. The utterances are
random newspaper sentences, and they are not phonetically or
acoustically balanced or filtered. To overcome the lack of data,
we also used an artificial data enhancement method, in which
the original speech samples were added twice to the training
set, thus doubling the training data (ID:Db). This method was
applied either for just the postfiltering network, or for both the
TTS system and the postfiltering (ID:M*Db P*Db).

In this study, for the postfiltering, only a feed-forward
network architecture was considered. However, the number
of layers (4, 5 and 6), the activation function (tanh and

2Online demo: www.romaniantts.com
3The ID refers to the system ID used in Table I.
4The asterisk (‘*’) marks a variable value.
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ReLU ), and the number of neurons per layer (256, 1024, and
layer halving or bottleneck: 1025-512-256-512-1024) were
examined.

For speaker adaptation, different volumes of data from each
speaker were used to train the eigen voice (ID:SPKA* E*):
100 utterances which translates into 1000 total utterances for
training, and 500 utterances from each speaker, 5000 in total.
The network’s adaptation was then performed with either 100
or 500 utterances from the target speaker. For postfiltering
a network trained on the same 100 utterances from each
of the 10 speakers (ID:*MSPK) was evaluated. This system
is similar to the speaker adaptation strategy, in the sense
that the network is trained on multi-speaker data. However,
no aposteriori weight tuning was performed, and no speaker
embeddings were used as features.

Table I summarises the systems’ description and the
IDs selected for the objective and the subjective evalua-
tions.5 Audio samples from all the systems are available at:
speech.utcluj.ro/pf_is2020/.

C. Listening test setup

Although many studies have been conducted on the objec-
tive analysis of the synthesised speech quality [34], there are
still no measures which truly correlate to the perceptual eval-
uation of the synthesised speech. Hence, subjective listening
tests are required. In this evaluation, as the number of initial
systems is quite large for a listening test, the 7 most relevant
systems were selected and tested with two different voices.
The systems and their listening test identifiers are shown in
Table I.

The lower bound of our setup is M050 (A)–the TTS system
trained on 50 utterances (approx. 5 mins). The upper bounds
are M500 (G) trained on 500 utterances (approx. 50 mins)
and the natural (H) samples. System M100 (B) is our baseline
for the postfiltering process. Out of the various postfilter
network architectures, the 6 tanh layers of 1024 nodes
each (M100 PF100 6TANH1024) exhibited the best objective
score for both speakers (see Section IV), and they were
included for the evaluation of the postfiltering effect alone
(C). Artificially doubling the data in both voice training and
postfiltering also showed an increase of the objective score, so
that system (M100Db PF100Db) was selected, as well. As the
multi-speaker network could be viewed as an eigen postfilter,
systems M100 PF MSPK and SPKA100 E100 were included
for the multi-speaker setup comparison.

The listening test comprised 4 sections: a) Naturalness–
evaluated using a Mean Opinion Score (MOS) scale consisting
of 5 points [1-Unnatural, 5-Natural]; b) Speaker similarity–
evaluated on a 5-point MOS scale [1-Not similar at all, 5-Very
similar]; c) Intelligibility–evaluated using a Word Error Rate
(WER) measure; and d) ABX naturalness–each system was
randomly paired with all other systems and listeners had to
mark which sample sounds more natural.

5Different IDs are used in the objective evaluation as it is easier to follow
the multiple setups.

IV. RESULTS

A. Objective measures
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Fig. 2. Average Mel Cepstral Distortion for the (a) BEA and (b) MAR
systems. Horizontal bars represent the mean MCD values, and are overlapped
with boxplots.

The systems’ performance is objectively measured with Mel
Cepstral Distortion (MCD) [35]. Because the accuracy of the
state-level alignment is unknown, the MCD value was obtained
over the best path in DTW, and it does not take into account
the 0th coefficient. 50 utterances not contained in the training
dataset were synthesised and used to compute the average
MCD for speakers BEA and MAR. MAR speaker’s distortion
included only the listening test systems. Figure 2 shows these
results.

As expected, out of the baseline TTS systems, M500 per-
formed the best and M050 the worst. M100’s scores are quite
low, but artificially doubling the data increases the quality
of the synthesis (M050Db, M100Db). The postfiltering also
decreases the cepstral distortion relative to the correspon-
dent TTS (M050 PF050, M100 PF100, M100Db PF100Db,
M500 PF500). The average decrease in MCD is 5%, with
a maximum of 7.5% for M500 PF500. Postfiltering plus
data doubling has the most effect (M050Db PF050Db,
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TABLE I
SYNTHESIS SYSTEMS’ DESCRIPTION

No. System ID Listening test No. utts No. utts Postfiltering architectureID voice training postfiltering
1 NAT H Natural N/A N/A
2 M050 A 50 N/A N/A
3 M050Db - 50x2 N/A N/A
4 M100 B 100 N/A N/A
5 M100Db - 100x2 N/A N/A
6 M500 G 500 N/A N/A
7 M050 PF050 - 50 50 6 TANH x 1024
8 M050Db PF050Db - 50x2 50x2 6 TANH x 1024
9 M100 PF100 4TANH256 - 100 100 4 TANH x 256

10 M100 PF100 5TANHBTLNK - 100 100 5 TANH (1024-512-256-512-1024)
11 M100 PF100 6TANH1024 C 100 100 6 TANH x 1024
12 M100 PF100 4RELU256 - 100 100 4 RELU x 256
13 M100 PF100 5RELUBTLNK - 100 100 5 RELU (1024-512-256-512-1024)
14 M100 PF100 6RELU1024 - 100 100 6 RELU x 1024
15 M100 PF MSPK E 100 10x100 Multi-speaker 6 TANH x 1024
16 M100Db PF100Db D 100x2 100x2 6 TANH x 1024
17 M100 PF100Db - 100 100x2 6 TANH x 1024
18 M500 PF500 - 500 500 6 TANH x 1024

No. utts for eigen voice No. utts for target speaker
19 SPKA100 E100 F 10x100 100
20 SPKA100 E500 - 10x500 100
21 SPKA500 E500 - 10x500 500

M100Db PF100Db), with a 10% decrease in MCD for
M100Db PF100Db. Doubling the data for the postfiltering
alone (M100 PF100Db) only marginally decreases the MCD.
With respect to the postfilter network architecture, the 6 tanh
layers with 1024 nodes per layer (M100 PF100 6TANH1024)
had the best performance. All other network architectures
have higher MCD scores, yet not significantly higher. When
multiple speakers are available, speaker adaptation is in-
deed a solution: systems SPKA100 E100, SPKA100 E100,
SPKA E500 have some of the lowest MCD scores. However,
the multi-speaker postfilter (M100 PF MSPK) is comparable
only to the speaker-dependent filter.

B. Listening tests

The 7 selected systems, along with natural speech samples
were included in two separate listening tests: one for speaker
BEA, and one for speaker MAR. Each voice was evaluated by
20 native Romanian listeners. A couple of listeners misread
the MOS scale, and their results were discarded.

Figure 3 shows the results. The best performing system
(G) is considered the baseline synthesis system as it uses the
most amount of data (approx. 50 minutes). The other systems
analysed are of higher interest in the evaluation as they use
approximately 10 minutes or less data. It can be observed that
the naturalness and the speaker similarity are improved by
the postfiltering (C) for both speakers. Artificially doubling
the data (D) enhances the output speech’s naturalness, but not
the speaker similarity. However, the intelligibility is affected
by the postfiltering in all setups, and slightly improved by the
data doubling. The multi-speaker postfiltering network (E) has
similar effects as the speaker dependent postfiltering in terms
of naturalness. But it is interesting to notice that when it comes
to the speaker similarity section, the network trained with
multi-speaker data performs better than the speaker dependent

one. In the ABX section, the preference over each systems is
incremental, with a minor exception for MAR’s system D.

C. Discussions

Both the objective and the subjective results showed that
postfiltering and artificial data doubling have beneficial effects
over the quality of the synthesised output, and can be jointly
used in scenarios where the training speech data is insufficient.
The effect of the postfilter can be interpreted as a result of the
fact that as opposed to the TTS network, it only needs to
learn a mapping of vectors which are sampled from similar
feature spaces. So it actually learns where the TTS system
failed with respect to the natural sample, and not to the lexical
input. Artificially doubling the data is useful especially in the
DNN setup. Here, the training is done at batch-level, and
a global overview of the entire dataset is not available to
the learning mechanism at each step. As the batches are not
selected sequentially, having more samples to learn from can
improve the output. Similar to the data doubling, the high
sampling frequency (48kHz) also provides more data points.
This was also useful for HMM-based synthesis [31]. The
fact that the eigen-postfilter was rated higher in the speaker
similarity test, could be a result of a better modelling of the
speech characteristics in general, and not of the target speaker
in particular.

By listening to the samples, there are some interesting ob-
servations to be made. Many of the voiced/unvoiced decision
errors of the TTS system were corrected by the postfilter.
Also, the buzziness of the TTS speech is noticeably reduced.
However, the postfilter makes the speech more metallic-
sounding, and it could translate into the drop in intelligibility.
The decrease of intelligibility is not at all desired, especially
in the case of limited training data, and it is already the focus
of our next studies.
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Fig. 3. Listening test results for speakers BEA and MAR: (a) Naturalness
MOS scores, (b) Speaker similarity MOS scores, (c) Intelligibility WER,
and (d) ABX preference. In (a) and (b) is fedbars represent the mean value
with boxplots overlapped. In (c) bars represent the average WER. In (d) the
horizontal bars represent the preference for one system against all others, no
preference, or preference for any of the other systems.

V. CONCLUSIONS

This paper described an evaluation of a DNN-based post-
filtering method for DNN generated speech using limited
resources. The postfilter is trained on pairs of synthetic-to-
natural acoustic features, and used to enhance the output of
DNN-based TTS system trained on the same data. Starting
from as little as 10 minutes of speech from one speaker,
this processing chain improves the output synthetic speech as
evaluated objectively with MCD, and subjectively in listening
tests. A downside of this process at this point is the drop
in intelligibility, which can be caused by the metallic speech

characteristic introduced by the postfilter, and it needs to be
investigated further.

For future work, we still need to study other network
topologies, as well using other vocoders, or adding additional
features to the postfilter, such as lexical or speaker embed-
dings. In the multi-speaker postfilter, we also need to analyse
the weight tuning for the target speaker. Using the correct
state-level alignments also needs to be considered. This is
important for a direct mapping of synthetic-to-natural features.
Also, male speaker voices were not evaluated, and might
exhibit a different behaviour.
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Abstract
Deep learning enables the development of efficient end-to-end
speech processing applications while bypassing the need for
expert linguistic and signal processing features. Yet, recent
studies show that good quality speech resources and phonetic
transcription of the training data can enhance the results of
these applications. In this paper, the RECOApy tool is in-
troduced. RECOApy streamlines the steps of data recording
and pre-processing required in end-to-end speech-based ap-
plications. The tool implements an easy-to-use interface for
prompted speech recording, spectrogram and waveform analy-
sis, utterance-level normalisation and silence trimming, as well
grapheme-to-phoneme conversion of the prompts in eight lan-
guages: Czech, English, French, German, Italian, Polish, Ro-
manian and Spanish.

The grapheme-to-phoneme (G2P) converters are deep neu-
ral network (DNN) based architectures trained on lexicons ex-
tracted from the Wiktionary online collaborative resource. With
the different degree of orthographic transparency, as well as
the varying amount of phonetic entries across the languages,
the DNN’s hyperparameters are optimised with an evolution
strategy. The phoneme and word error rates of the resulting
G2P converters are presented and discussed. The tool, the pro-
cessed phonetic lexicons and trained G2P models are made
freely available.
Index Terms: speech recording tool, multilingual, pho-
netic transcription, grapheme-to-phoneme, evolution strategy,
sequence-to-sequence, convolutional networks, transformer
networks.

1. Introduction
Nowadays, in the development of deep neural networks (DNN)
based speech processing applications, most of the signal prepro-
cessing, feature extraction and linguistic annotations are part of
the inherent neural learning. This means that systems for au-
tomatic speech recognition (ASR) and text-to-speech synthesis
(TTS) can be easily trained using only pairs of audio and ortho-
graphic transcript [1, 2, 3]. A major advantage of this approach
is that training data can be easily and readily found, and that
there is no language dependency in the development stage—
other than the language specific speech resources. Although this
approach yields satisfactory results for most end-user applica-
tions, when it comes to high quality systems, found speech data
and orthographic input does not suffice [4]. Most of the high-
end commercial applications still make use of large amounts of
studio recordings and elaborate text processing modules [2, 5].

Hence, there is still a need for tools which can facilitate the
development of domain or speaker specific training data, as well
as tools which can generate expert linguistic features in a variety
of languages. In this context, the first version of the RECOApy

tool is introduced. RECOApy was designed with the main pur-
pose of enabling end-users to record their own data and prepare
it for end-to-end speech processing applications. It provides an
easy to use interface for prompted speech recoding which in-
cludes several monitoring and data processing options (see Sec-
tion 2), as well as a set of highly accurate pre-trained neural
network models able to phonetically transcribe the prompts in
eight languages.

The task of building grapheme-to-phoneme converters is
not novel, but depending on a language’s orthographic trans-
parency and onset entropy [6], G2P can be solved using simple
rule-based systems (e.g. Finnish) or can pose serious problems
even for the most advanced deep learning algorithms (e.g. En-
glish). The modern G2P converters aim at solving the prob-
lem of phonetic transcription in multiple languages at once.
But phonetic lexicons are not readily available in most lan-
guages, and researchers are now investigating the use of collab-
orative online resources, such as Wiktionary,1 as an alternative.
[7] does just this by extracting the phonetic transcriptions in
six languages from Wiktionary and validates them over manu-
ally crafted lexicons. The authors of [8] also use several online
repositories to train and adapt the models from high-resource
languages to related low-resource languages. Multilingual G2P
was also addressed by changing the grapheme representation:
[9] proposes a model which uses byte-level input representa-
tion to accommodate different grapheme systems, along with
an attention-based Transformer architecture. Ancillary audio
data was also used to learn a more optimal intermediate repre-
sentation of source graphemes in a multi-task training process
for multilingual G2P [10].

As the grapheme-to-phoneme task is inherently a sequence
to sequence (seq2seq) mapping problem, the G2P converter in
RECOApy uses this type of learning architecture. Similar ap-
proaches were introduced in [11]. The authors map the entire
input grapheme sequence to a vector, and then use a recurrent
neural network to generate the output sequence conditioned on
the encoding vector. [12] describes a G2P model based on a uni-
directional LSTM with different output delays and deep bidirec-
tional LSTM with a connectionist temporal classification layer.
Milde et al. [13] investigate how multitask learning can im-
prove the performance of sequence-to-sequence G2P models.
A single seq2seq model is trained on multiple phoneme lexicon
datasets containing several languages and phonetic alphabets.
Esch et al. [14] train recurrent neural network-based models to
predict the syllabification and stress patterns of the input text for
TTS, while also deriving phonetic transcriptions in the process.
The use of entire phrases as input to LSTM, biLSTM and CNN-
based neural networks and their evaluation in English, Czech
and Russian is presented in [15].

1www.wiktionary.org
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Starting from this overview of multilingual and neural
networks-based training schemes, RECOApy’s G2P module in-
corporates the use of online collaborative phonetic lexicons and
lexicon-tailored seq2seq neural network architectures derived
with the help of an evolution strategy. The RECOApy tool,
along with the parsed lexicons and complete set of trained mod-
els are made freely available. The G2P module can be used as a
standalone tool as well.

The paper is organised as follows: Section 2 introduces the
recording app and its features. Section 3 presents the phonetic
transcription tool development and hyperparameter tuning us-
ing evolution strategies. Results of the phonetic converters are
discussed in Section 3.3, and conclusions are drawn in Sec-
tion 4.

2. RECOApy GUI
Recording prompted speech by end-users can be easily per-
formed with any of the numerous free general purpose record-
ing tools available, such as Audacity2 or Wavesurfer [16]. But
this means that in order to obtain phrase-length speech seg-
ments, the continuous recording stream needs to be manually
segmented and aligned to the prompts. Or that the recording
operator needs to start and stop the recording after each prompt
reading. In both cases incorrect readings need to be marked or
deleted. This makes the methods tedious, time consuming and
error prone.

RECOApy was developed with the main objective of
streamlining the end-user speech recording process through a
series of pre- and post-processing steps. The GUI application
is implemented in Python 3.7 with Tkinter3 and PyAudio.4 Its
interface is shown in Figure 1. Each prompt is individually dis-
played to the speaker. Once the recording starts, the input am-
plitude is monitored and its peak value is displayed such that
any signal distortion or low level input can be detected. For ad-
ditional monitoring, the lower panels of the interface display the
waveform and spectrogram of the recorded prompt. Parameters
such as sampling frequency and bit depth can be set from the
configuration file and depend on the available hardware. The
recording operator can easily navigate through the prompts and
re-record any of them without any extra setup. Additional fea-
tures of RECOApy include waveform normalization and silence
trimming, as well as a Safe Copy option. This means that if the
recording operator is unsure of the correctness of the current
recording, a backup copy can be saved and later inspected.

Alongside the orthographic form of the prompts, the pho-
netic transcription can also be displayed. This enables the
speaker to read the prompts as intended by the developer. The
phonetic transcription may already be available in the prompts,
or can be generated and saved from within RECOApy, as intro-
duced in the next section.

3. G2P conversion module
To further enhance the usability and applicability of the record-
ing tool, and given the results of [4], RECOApy can perform
an accurate phonetic transcription of the prompts in eight lan-
guages: Czech, English, French, German, Italian, Polish, Ro-
manian and Spanish. The data and methods used to develop the
grapheme-to-phoneme converters are described next.

2https://www.audacityteam.org/
3https://wiki.python.org/moin/TkInter
4https://pypi.org/project/PyAudio/

Figure 1: RECOApy GUI

3.1. Phonetic lexicons

Even for the mainstream languages, large, manually annotated
lexicons are not easily and readily accessible. And most re-
search groups have developed their internal resources [9, 14].
An alternative to this individual effort is the collaborative online
resource called Wiktionary. It contains word definitions in 171
languages, of which 45 languages include more than 100,000
entries. The usability of Wiktionary as an alternative to the
hand crafted resources has already been studied—[17] shows
its great impact on the future directions of lexicography. A sig-
nificant number of the dictionary entries also include phonetic
transcriptions. Their use in G2P methods has been tackled be-
fore [7, 8], and can therefore constitute the base for the work
presented in this paper.

However, as this resource is constantly expanding, process-
ing the latest database dumps is beneficial [7].5 A first step
for preparing the lexicons was to determine the list of words
which include phonetic entries and to extract these pronuncia-
tions. Because the data is crowd-controlled, there is no guar-
antee that the transcriptions are correct and consistent, or that
the entries pertain to a single language. To mitigate these is-
sues, a part of the transcriptions were discarded: entries con-
taining graphemes outside the standard alphabet of the respec-
tive language; entries containing phonemes whose occurrence
is less than 100 across the respective lexicon; and entries with a
phonetic transcription significantly longer than the orthographic
form, which might be indicative of two or more pronunciation
versions entered in the same field. There was also a set of identi-
cal entries (same word, same phonetic transcription), and these
were collapsed into a single entry. All lexical stress symbols,
if present, were removed. The final number of entries in each
lexicon can be found in Table 2.

Due to the potential transcription errors present in Wik-
tionary, which might affect the performance of the G2P conver-
sion networks, two well-established manually checked lexicons
were also included in the evaluation: the English CMU Pronun-
ciation Dictionary6 and the Romanian MaRePhor lexicon [18].
Version 0.7b of CMUdict was used and all entries containing
numbers and any other symbol except the apostrophe were dis-
carded. The lexical stress in the pronunciation was removed.

5wiktionary-20200301* versions of the database were used here.
6http://www.speech.cs.cmu.edu/cgi-bin/cmudict

587



3.2. G2P conversion networks

Given the variable lengths of the orthographic and phonetic
representations of a word, the task of grapheme-to-phoneme
conversion is inherently a sequence-to-sequence mapping prob-
lem [19]. Within the set of sequence-to-sequence deep learn-
ing algorithms, the most prominent are those based on recurrent
(RNN), convolutional (CNN) and full-attention (Transformer)
architectures. Although the RNN seq2seq is a highly efficient
and adequate method to process temporal or order dependent se-
quences, it exhibits a slow convergence and high computational
complexity. As a result, more and more NLP tasks have been
addressed with CNN or hybrid seq2seq alternatives [20, 21].
Along the CNN-based architecture, the Transformer network
has been successfully applied in machine translation tasks [22],
and G2P conversion networks [9, 23].

These two seq2seq architectures were selected as the start-
ing point in the development of RECOApy’s G2P module. The
CNN network’s encoder and decoder are composed of 1D con-
volution, activation and normalization layers. An attention layer
merges the hidden representations of the encoder and decoder.
The attention context is concatenated with the decoder repre-
sentation and passed through another set of 1D convolution
layers—denoted as decoder output—to generate a softmax out-
put. No residual connections or embedding layers are used. The
Transformer network closely follows the architecture of [22],
with multi-head self-attention layers combined with fully con-
nected ones in the encoder, decoder and decoder output mod-
ules. A positional embedding layer pre-processes the inputs.

For these two neural architectures, the topologies which ob-
tained the best results for English are described in [9, 23, 24].
However, taking into consideration the G2P complexity across
languages, as well as the variable dimension of each phonetic
lexicon, the architectures’ hyperparameters need to be opti-
mized [25]. Genetic algorithms and evolution strategies man-
age to provide near-optimal solutions for complex tasks, such as
image classification [26] and reinforcement learning [27]. For
the current task of G2P conversion across multiple languages
and datasets, an evolution strategy (ES) similar to the one de-
scribed in [26] was adopted. The genes represent various topol-
ogy parameters, such as number of layers in the encoder or the
decoder, the hidden dimensions of the layers or the activation
function. The fitness of a genome is determined on its ability to
predict a set of word-level phonetic transcriptions. The initial
population is randomly selected from the genome pool. In each
new generation, the fittest individuals are maintained and bred
to create new individuals by random recombinations and muta-
tions. A small sample of the less fit individuals are also bred in
order to explore the gene space more thoroughly.

3.3. G2P results

The neural network architectures’ hyperparameters were opti-
mized over 10 generations each with a population size of 10.
The fitness of a genome was assessed in terms of the word error
rate (WER) computed over a held-out test set of 500 samples
at the end of a 20 epoch training process. The small number of
epochs and evaluation samples was chosen so that the evolution
strategy did not fit the respective train-test split. The number of
lexicon entries used for hyperparameter optimisation was lim-
ited to 150,000 samples.7 The set of genes and gene values for
each neural architecture is shown in Table 1. This set does by
no means explore the entire hyperparameter search space, but it

7See Table 2 for the number of entries in each lexicon.

Table 1: Set of genes and gene values used in the evolution
strategy. The first column marks the gene ID within the genome.

Gene ID CNN seq2seq
G1 encoder layers 2, 3, 4
G2 encoder layers dimension 32, 64, 128, 256
G3 decoder layers 2, 3, 4
G4 decoder layers dimension 32, 64, 128, 256
G5 decoder output layers 2, 3, 4
G6 decoder output layers dim. 32, 64, 128
G7 activation ReLU, Linear
G8 optimizer Adam, RMSprop
G9 batch size 32, 64, 128, 256, 512

Transformer seq2seq
G1 encoder layers 2, 3, 4
G2 decoder layers 2, 3, 4
G3 embedding dimension 32, 64, 128
G4 attention heads 2, 4
G5 dropout rate 0.01, 0.05, 0.1, 0.15
G6 hidden layer dimension 32, 64, 128, 256

512, 1024
G7 batch size 32, 64, 128, 256, 512

does address some of the key topological variables. The fittest
individual for each neural architecture, language and lexicon
was selected and trained further on the entire set of entries. An
early stopping criterion set to monitor variations of less than 1%
in the loss metric over 50 steps prevented overfitting. An 80-20
split with random sampling was employed for training and test-
ing the networks, respectively. The split was different from the
one used in the evolution strategy, and the fitness computation
data was discarded.

Table 2 shows the results of the G2P conversion module. It
includes the total number of entries in each lexicon next to the
number of unique entries and phonetic symbols. The number of
phonetic symbols represent the set of symbols used in the pho-
netic transcriptions. For the Wiktionary lexicons these might
not fully overlap with the language’s phoneme set. For each
neural architecture the genes of the fittest individual are also
presented. The accuracy of the G2P is reported in terms of word
error rate (WER) and Levenshtein distance-based phoneme er-
ror rate (PER) [28]. For entries with multiple pronunciations,
the target which minimized the PER and WER was selected.

The best performing architecture varies across languages,
as well as in between lexicons of the same language, but the
error rate differences are not truly significant. For example,
the Romanian Wiktionary lexicon is better fitted by the CNN
seq2seq, while for MaRePhor, the Transformer achieves lower
WER and PER. For English, both lexicons are better fitted by
the Transformer. The dataset’s dimension does not seem to
favour any of the architectures either, even though the number
of trainable parameters is largely different. For example, the
MaRePhor CNN model has 173,672 trainable parameters, and
the transformer has only 71,146. But by inspecting the com-
parable sized lexicons in Czech and Spanish, the Transformer
achieves better WER and PER for Czech, yet falls short of the
CNN seq2seq in Spanish. This happens despite the fact that
Czech and Spanish also exhibit comparable orthographic trans-
parency levels [6]. One conclusion that can be directly drawn
from here is that there is no universal recipe to solve the G2P
task, and each solution and architecture needs to be tailored to
the particular language, phonetic representation, and available
resources. The absolute error rates for each language presented
here are comparable or lower than the ones in [7] and [14]. But
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Table 2: Lexicon descriptions, network hyperparameters and accuracy results of the grapheme-to-phoneme module . The phonetic
symbols column indicates the number of distinct phonemes found in the respective lexicon. The gene IDs are listed in Table 1. Best
results for each lexicon are highlighted in boldface.

Lang Lexicon Entries Unique Phonetic Model G1 G2 G3 G4 G5 G6 G7 G8 G9 WER PERentries symbols

EN
CMUdict 132,585 123,874 39 CNN 2 128 2 128 3 128/64/32 ReLU RMSp 512 29.82 11.41

Transformer 4 3 64 4 0.01 512 64 - - 23.16 8.03

Wiktionary 71,332 48,773 39 CNN 2 128 2 128 3 128/64/32 ReLU RMSp 256 28.92 12.39
Transformer 4 4 32 4 0.01 128 128 - - 22.50 8.23

RO
MaRePhor 72,375 72,375 40 CNN 3 64 2 32 3 64/32/32 Lin Adam 128 2.64 0.5

Transformer 2 4 32 2 0.05 64 64 - - 2.30 0.42

Wiktionary 63,013 62,733 32 CNN 3 128 2 32 3 128/64/32 Lin Adam 512 3.00 0.50
Transformer 3 2 64 2 0.05 64 256 - - 3.58 0.71

CZ Wiktionary 42,014 41,419 41 CNN 2 32 4 128 3 64/32/32 Lin RMSp 128 11.69 3.84
Transformer 2 2 32 2 0.05 64 32 - - 9.45 2.37

DE Wiktionary 327,296 315,793 51 CNN 3 128 3 32 3 128/64/32 ReLU Adam 512 5.50 1.43
Transformer 4 2 64 2 0.05 32 64 - - 8.80 2.24

ES Wiktionary 49,346 42,732 31 CNN 3 128 4 64 2 128/64 ReLU Adam 128 9.81 2.20
Transformer 2 4 32 4 0.05 32 32 - - 11.90 2.95

FR Wiktionary 1,121,714 1,115,343 35 CNN 3 128 3 32 3 128/64/32 ReLU Adam 512 4.38 1.02
Transformer 2 3 64 2 0.05 128 64 - - 4.78 0.97

IT Wiktionary 29,826 29,242 28 CNN 2 128 4 128 2 64/32 ReLU RMSp 256 18.67 4.44
Transformer 2 2 64 2 0.01 512 64 - - 19.04 5.00

PL Wiktionary 35,646 35,544 48 CNN 4 64 2 128 2 128/64 ReLU Adam 128 3.59 1.84
Transformer 3 2 64 4 0.05 1024 128 - - 2.98 1.34

the different lexicon versions and train-test splits make a direct,
fully correct comparison impossible. As an overview of the ar-
chitectures’ performance, the average WER across lexicons for
the CNN seq2seq is 11.80%, and the PER is 3.95%. For the
Transformer, the average WER is 10.95% and PER is 3.22%.

Inspecting the performance over the supervised lexicons,
for MaRephor the results are in line with previous studies [29].
The CMUdict error rates obtained here (23.16% WER and
8.03% PER) are slightly lower than the ones reported in the
state-of-the-art methods ([23]: 22.1% WER and 5.1% PER).
However, the CMUdict versions and train-test splits are differ-
ent. When applying the same architecture8 on this version of the
CMUdict, the results were 22.8% WER and 7.19% PER. It is in-
teresting, however, to notice that the ES evolved a rather similar
architecture for the Transformer seq2seq. It may be the case
that an evaluation of the fitness over larger number of epochs
and validation set, would yield the same architecture, and there-
fore same performance. One other interesting fact in the re-
sults reported here is the high WER for Italian. When analysing
the decoded sequences from both networks, it was found that
over 60% of the erroneous words had only a single incorrect
phoneme, and it was mostly the case of vowel-semivowel sub-
stitutions.

Looking at the inference duration, the MaRePhor CNN
seq2seq model processes 5000 words in approximately 55 sec-
onds, while the Transformer seq2seq does it in around 120 sec-
onds.9 Given the large difference in inference time and only
minor drops of accuracy for some of the lexicons, RECOApy
integrates the CNN-based models alone. However, the trained
Transformer models are available in the tool’s webpage.

8The authors of [23] kindly provided their implementation.
9On an NVidia GeForce RTX 2080 Ti GPU with 12GB vRAM.

4. Conclusions
This paper introduced RECOApy, a tool for data recording, pre-
processing and phonetic transcription of training data aimed at
speech-based end-to-end applications. The tool enables fast and
accurate recording of text prompts at various sampling rates
and bit depths, while offering the recording operator the pos-
sibility to supervise the quality of the process as well. Ad-
ditional automatic options to normalise the audio and to dis-
card the start and end silence segments are also available. One
other important feature of RECOApy is that of automatic pho-
netic transcription of the prompts in eight languages: Czech,
English, French, German, Italian, Polish, Romanian and Span-
ish. The G2P module consists of state-of-the-art neural net-
work based architectures achieving low word and phoneme er-
ror rates across all languages. As a conclusion, the RECOApy
tool can most certainly be used as a reliable means to develop
the training data for end-to-end speech-based applications. In
fact, our research group has already collected over 50 hours of
prompted speech from non-expert volunteers using this record-
ing tool. The tool, lexicons and models are available here:
www.gitlab.utcluj.ro/sadriana/recoapy/.

Future developments of the tool include the addition of
more languages in the G2P module, a more in-depth analysis
of the hyperparameter space, as well as the augmentation of
the prompts with syllabification and lexical stress assignment.
A potential significant developement would be to also include
prosodic cues—similar to [30].
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Beáta Lőrincz1,2

1 Technical University, Communications Department, 400027, Cluj-Napoca, Romania
2 Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 400084, Cluj-Napoca, Romania

Abstract

This paper evaluates four different sequence-to-sequence deep neural network architectures aimed to jointly solve the tasks of: pho-
netic transcription, lexical stress assignment and syllabification. These text processing tasks are considered essential components
for high quality text-to-speech or automatic speech recognition systems, with the phonetic transcription being the most frequently
used in these types of applications.

Although each of the tasks has been individually and extensively analyzed in the scientific literature, there are few studies which
target a concurrent solution for them. In general, the lexical stress assignment and syllabification are used as augmenting input
features to the phonetic transcription model and not considered as target features.

The proposed network architectures include recurrent, convolution and attention neural layers and were evaluated on hand-
checked English and Romanian datasets. The accuracy of the models was evaluated in terms of accuracy for the concurrent predic-
tion of all three tasks, as well as by discarding the syllabification or lexical stress predictions. The best results were obtained with
a combination of convolution and attention layers, where the accuracy of the joint prediction for the three tasks was of 58.96% for
English and 86.64% for Romanian. The same model for English obtains an accuracy of 59.70% when syllables are discarded and
64% when the prediction of lexical stress is ignored. With the same best performing model for Romanian an accuracy of 88.83%
without syllables and 93.84% without lexical stress is obtained.

c© 2020 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Keywords: phonetic transcription; syllabification; lexical stress assignment; neural networks; sequence-to-sequence; English; Romanian

1. Introduction

Natural language processing (NLP) tasks are still vital components in many speech and language processing flows,
such as text-to-speech (TTS) or automatic speech recognition (ASR) applications. Knowing how the words are pro-

E-mail address: beata.lorincz@com.utcluj.ro (Beáta Lőrincz1,2).
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nounced is essential for producing high quality speech synthesis and speech recognition systems [1]. The exact pro-
nunciation of a word in a language depends mostly on its constituent phones. However, the syllable structure and
lexical stress play an important role in assigning the correct meaning and emphasis to it [2].

None of these three tasks is a novel or lacks extended research. However, an important aspect of the speech pro-
cessing applications is that they require real-time processing. Having separate modules for each of the tasks translates
into an overhead for the processing flow. As a countermeasure in this work a concurrent solution for the phonetic tran-
scription, lexical stress assignment and syllabification is proposed. The goal is to evaluate the feasibility of a single
model which jointly predicts all three linguistic information. The languages used in the evaluation are English and
Romanian.

In terms of algorithmic approach, recent studies showed that deep neural network based sequence-to-sequence
models are highly efficient in solving the tasks of phonetic transcription, lexical stress assignment and syllabification in
various languages [3]. Recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM) or bidirectional
LSTM (BLSTM) networks, as well as convolutional neural networks (CNN) are applied in studies achieving state-
of-the-art results. Starting from this observation, the current study employs recurrent, convolution and attention-based
neural network architectures as the main training strategies, and evaluates several combinations and variations of a
sequence-to-sequence learning scenario. The paper is structured as follows: Section 2 presents some of the state-of-
the-art research for the selected tasks, Section 3 describes the tasks and network architectures, and Section 4 details
the datasets and training parameters used in the experiments. In Section 5 the results are discussed and the conclusions
are summarized in Section 6.

2. Related work

Although there are numerous studies which apply traditional machine learning techniques to solve each of the three
tasks, this section will focus on the more recent neural and deep neural approaches. Results reported using recurrent
network for the task of phonetic transcription for English are presented first, followed by the application of CNN and
other architectures used for the same task. After the results on the lexical stress assignment and syllabification for
English, studies addressing all three tasks for the Romanian language are introduced.

[1] reports that ”joint-sequence n-gram models and sequence-to-sequence models” are used most frequently for the
task of phonetic transcription. The authors of the paper present experiments and results for twenty languages using
LSTM and BLSTM networks trained to predict the stress or phonetic transcription. The best results for English are
accuracies of 93.1% for stress prediction using a parallel input of phonemes and graphemes, while for pronunciation
prediction the best accuracy is 64.2% when the input is enhanced with stress and syllabification information. In [4]
the phonetic transcription task is approached with the combination of LSTM networks and n-gram models and an
accuracy of 78.7% is obtained on the CMU dataset [5]. Sequence-to-sequence LSTM and BLSTM models are applied
in [6] for phonetic transcription on three English datasets, reaching an accuracy of 76.45% on the CMU dataset. RNN
architectures are also used in [7] reporting an accuracy of 72.36% using BLSTMs with alignment constraints and in
[3] where sequence-to-sequence models with LSTM and attention modules obtain an accuracy of 75.12%, both on the
CMU dataset.

CNNs and mixed CNN and RNN architectures were also successfully applied in the context of phonetic tran-
scription. [8] presents a sequence-to-sequence model that uses convolutional and pooling layers in its encoder and a
BLSTM as a decoder that results in an accuracy of 74.87% on the CMU dataset. [9] discusses a CNN sequence-to-
sequence model with a non-sequential greedy decoder where instead of using the outputs of the previous time step the
input is selected based on the highest probability at each time step. The model predicts the phonemes with an accuracy
of 75.90%.

[10] applies attention mechanism for the task of phonetic transcription. The authors report results of an accuracy of
77.90% on the CMU dataset with mentioning that the model outperforms sequence-to-sequence models of recurrent
or convolutional architectures and has a considerably smaller model size compared to previous approaches.

Regarding the individual tasks of syllabification and lexical stress assignment, these are generally approached with
rule or decision tree based algorithms. The neural network based methods applied to these tasks are referred to as
data-driven methods. [11] describes experiments with BLSTM networks used to segment speech data into syllables,
in which the model correctly detects boundaries with an accuracy of 90.25% on syllable level. Detection of syllables
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nounced is essential for producing high quality speech synthesis and speech recognition systems [1]. The exact pro-
nunciation of a word in a language depends mostly on its constituent phones. However, the syllable structure and
lexical stress play an important role in assigning the correct meaning and emphasis to it [2].

None of these three tasks is a novel or lacks extended research. However, an important aspect of the speech pro-
cessing applications is that they require real-time processing. Having separate modules for each of the tasks translates
into an overhead for the processing flow. As a countermeasure in this work a concurrent solution for the phonetic tran-
scription, lexical stress assignment and syllabification is proposed. The goal is to evaluate the feasibility of a single
model which jointly predicts all three linguistic information. The languages used in the evaluation are English and
Romanian.

In terms of algorithmic approach, recent studies showed that deep neural network based sequence-to-sequence
models are highly efficient in solving the tasks of phonetic transcription, lexical stress assignment and syllabification in
various languages [3]. Recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM) or bidirectional
LSTM (BLSTM) networks, as well as convolutional neural networks (CNN) are applied in studies achieving state-
of-the-art results. Starting from this observation, the current study employs recurrent, convolution and attention-based
neural network architectures as the main training strategies, and evaluates several combinations and variations of a
sequence-to-sequence learning scenario. The paper is structured as follows: Section 2 presents some of the state-of-
the-art research for the selected tasks, Section 3 describes the tasks and network architectures, and Section 4 details
the datasets and training parameters used in the experiments. In Section 5 the results are discussed and the conclusions
are summarized in Section 6.

2. Related work

Although there are numerous studies which apply traditional machine learning techniques to solve each of the three
tasks, this section will focus on the more recent neural and deep neural approaches. Results reported using recurrent
network for the task of phonetic transcription for English are presented first, followed by the application of CNN and
other architectures used for the same task. After the results on the lexical stress assignment and syllabification for
English, studies addressing all three tasks for the Romanian language are introduced.

[1] reports that ”joint-sequence n-gram models and sequence-to-sequence models” are used most frequently for the
task of phonetic transcription. The authors of the paper present experiments and results for twenty languages using
LSTM and BLSTM networks trained to predict the stress or phonetic transcription. The best results for English are
accuracies of 93.1% for stress prediction using a parallel input of phonemes and graphemes, while for pronunciation
prediction the best accuracy is 64.2% when the input is enhanced with stress and syllabification information. In [4]
the phonetic transcription task is approached with the combination of LSTM networks and n-gram models and an
accuracy of 78.7% is obtained on the CMU dataset [5]. Sequence-to-sequence LSTM and BLSTM models are applied
in [6] for phonetic transcription on three English datasets, reaching an accuracy of 76.45% on the CMU dataset. RNN
architectures are also used in [7] reporting an accuracy of 72.36% using BLSTMs with alignment constraints and in
[3] where sequence-to-sequence models with LSTM and attention modules obtain an accuracy of 75.12%, both on the
CMU dataset.

CNNs and mixed CNN and RNN architectures were also successfully applied in the context of phonetic tran-
scription. [8] presents a sequence-to-sequence model that uses convolutional and pooling layers in its encoder and a
BLSTM as a decoder that results in an accuracy of 74.87% on the CMU dataset. [9] discusses a CNN sequence-to-
sequence model with a non-sequential greedy decoder where instead of using the outputs of the previous time step the
input is selected based on the highest probability at each time step. The model predicts the phonemes with an accuracy
of 75.90%.

[10] applies attention mechanism for the task of phonetic transcription. The authors report results of an accuracy of
77.90% on the CMU dataset with mentioning that the model outperforms sequence-to-sequence models of recurrent
or convolutional architectures and has a considerably smaller model size compared to previous approaches.

Regarding the individual tasks of syllabification and lexical stress assignment, these are generally approached with
rule or decision tree based algorithms. The neural network based methods applied to these tasks are referred to as
data-driven methods. [11] describes experiments with BLSTM networks used to segment speech data into syllables,
in which the model correctly detects boundaries with an accuracy of 90.25% on syllable level. Detection of syllables
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in speech data using RNNs is also presented in [12], where the accuracy achieved is 94%. Both of these studies
performed experiments on the TIMIT dataset [13]. Classification of lexical stress patterns from speech data using a
single multilayer perceptron neural network is presented in [14]. Neural networks composed of three feed forward
layers are used in [15] achieving an accuracy of 86% for stress prediction on the CELEX dataset [16].

[17] summarizes results for the task of phonetic transcriptions in the Romanian academic literature and lists the
available datasets for the Romanian language. The author presents experiments using sequence-to-sequence methods
composed of LSTM layers where the input is augmented with syllabification and/or lexical stress assignment. The best
results reported is an accuracy of 97.90% on word level where the input data is encoded using grapheme embeddings
and is enhanced with syllabification and lexical stress.

A comparison of traditional and deep neural network based methods for all three individual tasks applied to the
Romanian language is presented in [18]. The authors report an accuracy of 96% for stress assignment, 98% for
syllabification and 99.60% for phonetic transcription using deep neural networks on Romanian datasets.

All the works presented above aim to solve the tasks of phonetic transcription, lexical stress assignment and syl-
labification individually, in some cases the input data being augmented with additional linguistic information in order
to enhance the prediction output for the selected task [1], whereas the goal of our experiments is to predict all three
tasks simultaneously.

3. Method overview

The three NLP tasks selected for this evaluation were chosen especially due to their importance in TTS systems.
Even though the current deep neural TTS architectures can implicitly solve these tasks, they still play an important
role in the intelligibility and prosodic characteristics (rhythm and intonation) of the synthetic speech. It is, therefore,
essential to provide accurate phonetic transcription, lexical stress assignment and syllabification at the input of the
system. The following subsections describe the tasks of phonetic transcription, lexical stress assignment and syllabi-
fication for English and Romanian with language specific details which are relevant to the experiments, as well as the
network architectures and layers used to solve these tasks.

3.1. Selected NLP Tasks

Phonetic transcription or grapheme-to-phoneme conversion refers to the process of representing the written form
of a word into an acoustically-derived form suited for a correct reading or pronunciation of the respective word. Spe-
cific standard alphabets, such as the International Phonetic Alphabet (IPA)1 are used in this process. In this respect, the
language choice for the experiments touches two extremes of the complexity degree: Romanian is a newly reformed
language and its spelling is very close to the acoustic realization of the words, while English poses some of the most
complex phonetic transcription problems due to its dialect varieties and rich historic background. A SAMPA notation2

example of this difference is given below:

economy iy k aa n ah m iy
economia e k o n o m ij a

It can be observed that in Romanian the surface form of the word is closely related to its phonetic transcription,
while in English the surface form does not correlate with the constituent phones.

Lexical stress assignment refers to determining the most prominent syllable(s) within a word. The correct lexical
stress is important especially in the context of homographs. Romanian does not have predefined rules for placing
the stress, but the majority of words have the penultimate or final syllable stressed [19]. This rule does not apply
to the derivative and inflected word forms and neither does to neologisms [18]. In the case of polysyllabic words,
Romanian assigns the stress to a single syllable within a word as opposed to English where the lexical stress varies
in its prominence for syllables of the word [20]. The syllables in English can have a primary or secondary stress, or

1 https://www.internationalphoneticassociation.org/
2 https://www.phon.ucl.ac.uk/home/sampa/
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no stress. The majority of words (approximately 80%) have the primary stress placed on the first syllable [21]. An
example of lexical stress assignment in English and Romanian is given below:

economy eco’nomy
economia economi’a

Syllabification is the process of splitting a word into smaller units, generally pertaining to a single pronunciation
block of phonemes. This task, as well, is highly dependent on the language. Syllables define units within words
that also contribute to the pronunciation rhythm of words. The Romanian language has 7 basic rules for segmenting
the words into syllables with exceptions applied in the case of compound or hyphenated compound words [22].
In contrast, English has many more rules and so far there is no study which claims to present an exhaustive list
of syllabification rules. Although some rules are presented in several papers and linguistic books [23, 24, 25]. To
exemplify, the syllabification of the word economy in English and economia in Romanian is given below:

economy e-co-no-my
economia e-co-no-mi-a

By combining all three lexical information presented above into a single representation, the target sequence form
for the prediction model is obtained:

economy iy - k aa ’ - n ah - m iy
economia e - k o - n o - m ij ’ - a

3.2. Prediction network architectures

In recent work, next to the recurrent networks such as LSTMs or BLSTMs, deep convolutional networks are
frequently used for solving NLP tasks [1, 7, 26]. The recurrent or convolution based architectures can be embedded
into sequence-to-sequence learning methods [6], as these are suitable for tasks where the input and target sequences
are of different lengths. Recurrent or convolutional models extended with attention layers are also efficiently used [3]
or are replaced entirely by attention based models [10]. In our experiments sequence-to-sequence models composed
of recurrent, convolutional and attention layers are explored for the concurrent solution of the proposed tasks. The
properties of these architectures in regards to the selected tasks are discussed shortly in the following paragraphs.

The recurrent architectures allow for preserving context related information that is beneficial when modelling
sequential data. A connection between the current and previous states is introduced by RNNs. This is further enhanced
in LSTM units where this connection is replaced with a memory cell that facilitates learning long-term dependencies
[27]. LSTMs can retain useful information from previous features, but cannot make use of future input. To solve this
[28] introduces bidirectional RNNs where both forward and backward hidden states are stored in order to profit from
future and past context. BLSTMs are LSTM networks that can model long-term dependencies in the input data using
the forward and backward states for accessing past and future features.
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Fig. 1: Input and output for sequence-to-sequence model
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Beáta Lőrincz / Procedia Computer Science 00 (2020) 000–000

in speech data using RNNs is also presented in [12], where the accuracy achieved is 94%. Both of these studies
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single multilayer perceptron neural network is presented in [14]. Neural networks composed of three feed forward
layers are used in [15] achieving an accuracy of 86% for stress prediction on the CELEX dataset [16].
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no stress. The majority of words (approximately 80%) have the primary stress placed on the first syllable [21]. An
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Syllabification is the process of splitting a word into smaller units, generally pertaining to a single pronunciation
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the words into syllables with exceptions applied in the case of compound or hyphenated compound words [22].
In contrast, English has many more rules and so far there is no study which claims to present an exhaustive list
of syllabification rules. Although some rules are presented in several papers and linguistic books [23, 24, 25]. To
exemplify, the syllabification of the word economy in English and economia in Romanian is given below:

economy e-co-no-my
economia e-co-no-mi-a

By combining all three lexical information presented above into a single representation, the target sequence form
for the prediction model is obtained:

economy iy - k aa ’ - n ah - m iy
economia e - k o - n o - m ij ’ - a

3.2. Prediction network architectures

In recent work, next to the recurrent networks such as LSTMs or BLSTMs, deep convolutional networks are
frequently used for solving NLP tasks [1, 7, 26]. The recurrent or convolution based architectures can be embedded
into sequence-to-sequence learning methods [6], as these are suitable for tasks where the input and target sequences
are of different lengths. Recurrent or convolutional models extended with attention layers are also efficiently used [3]
or are replaced entirely by attention based models [10]. In our experiments sequence-to-sequence models composed
of recurrent, convolutional and attention layers are explored for the concurrent solution of the proposed tasks. The
properties of these architectures in regards to the selected tasks are discussed shortly in the following paragraphs.

The recurrent architectures allow for preserving context related information that is beneficial when modelling
sequential data. A connection between the current and previous states is introduced by RNNs. This is further enhanced
in LSTM units where this connection is replaced with a memory cell that facilitates learning long-term dependencies
[27]. LSTMs can retain useful information from previous features, but cannot make use of future input. To solve this
[28] introduces bidirectional RNNs where both forward and backward hidden states are stored in order to profit from
future and past context. BLSTMs are LSTM networks that can model long-term dependencies in the input data using
the forward and backward states for accessing past and future features.
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Fig. 1: Input and output for sequence-to-sequence model
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The convolutional architectures are suitable for computer vision as images have a compositional structure; but
also for NLP tasks as texts have a similar formation consisting of sentences, words, n-grams composed of characters
[26]. Convolution layers learn features or aspects of the input data using filters. These filters slide over the representa-
tion of the input data and calculate the dot product between the filter and input to obtain the activation maps that are
passed to the next layer. The output of the network is passed as final step through a fully-connected layer.

The attention mechanism is successfully applied in NLP tasks such as machine translation as it allows the encoder
and decoder to look at the entire input sequence. This is beneficial compared to recurrent architectures where long-
term dependencies can be remembered, but still remain a challenge. The attention is a method that helps the model
focus on important information by calculating the relevance of a set of values based on keys and queries. The attention
weights refer to the relevance of the encoder hidden states (the values) that are calculated based on the decoder hidden
states (query) and encoder hidden states (keys). The output is finally calculated based on the weighted sum of the
values [29].

As the input sequence and output sequences of the tasks targeted in this study are of different lengths, sequence-to-
sequence learning methods [30] are a suitable approach. These architectures include an encoder and a decoder where
the encoder learns a vector representation of the input sequence. Based on this representation the decoder learns how
to predict the next character of the output sequence. Both the encoder and decoder are neural networks that can be
composed of different types of layers. An example input and output sequence of the model is shown in Figure 1.

4. Evaluation

4.1. Datasets

For English, a modified version of the Carnegie Mellon University (CMU) [5] Pronouncing Dictionary was used.
The dictionary was extended by [31] with syllabification information using a Support Vector Machine method. The
results of this method applied on the CELEX lexical database [16] exhibit a 98% accuracy. Examples of the English
training samples are listed in Table 1. The numbers mark the primary, secondary or no stress information for each
vowel, while the hyphen marks the syllable boundaries.

In the Romanian part of the experiments, an augmented version of the MaRePhoR dictionary [32] was used. The
dictionary was extended by [17] with syllabification and lexical stress assignment using the RoSyllabiDict [33] and
DEX Online Database [34] dictionaries. Samples from the dataset entries are exemplified in Table 1. In contrast to the
English entries, there is only a single stress in the Romanian words marked with an apostrophe in the examples. The
hyphen marks the syllable boundaries.

The datasets were split into training and test sets with a ratio of 80 to 20, where the entries for both of the sets were
randomly selected. The same split was maintained for all the evaluations. The number of train and test samples for
each dataset is shown in Table 2.

Table 1: Dictionary entry samples from the syllabified CMU and augmented MaRePhor datasets. The syllabification, lexical stress and phonetic
transcriptions are all combined into one target string in the training data.

English CMU Romanian MaRePhor
Word Lexical information Word Lexical information

SYSTEM s ih1 - s t ah0 m BRUTĂRIE b r u - t @ - r ’ ij - e
CASHIERS k ae2 - sh ih1 r z PACHETUL p a - k j = ’ e - t u l

Table 2: Number of training and test samples per dataset

Dataset Total samples Training samples Test samples
English CMU 129,402 103,522 25,880

Romanian MaRePhor 62,873 56,586 6,287

Beáta Lőrincz / Procedia Computer Science 00 (2020) 000–000

In preparation for the network input, the training data was one-hot-encoded (OHE) based on the number of dis-
tinct characters used in the input including the special characters used to mark the syllabification and lexical stress.
For Romanian, letter embeddings (LE) obtained with the help of Gensim3 library were also used. The order of the
embedding was set to 30 and derived from the Romanian Wikipedia pages’ dump.4

4.2. Training architectures and parameters

The details of the four network architectures selected for this study are presented next.
The CNN with Attention model was provided an input layer with the size of the number of input characters (31

for Romanian and 30 for English), followed by 3 convolutional layers with a hidden dimension of 128, kernel size
of 3 and the ReLU activation function. The decoder’s input layer size was set to the number of phonemes tallied up
with the characters marking the syllable boundaries and accents (42 for Romanian and 43 for English). The output of
the encoder and decoders were combined with dot product in the attention module. The output was passed through
a softmax activation layer and the dot product of the result and decoder output were concatenated. This combined
decoder output was passed through 2 convolutional layers followed by 2 dense layers. The architecture of the model
is illustrated in Figure 2.

The LSTM with Attention model uses a similar architecture with the difference that the encoder and decoder are
composed of a single LSTM layer with a hidden size of 256, and the attention module outputs calculated with a dot
product are only passed through two dense layers.

The LSTM and BLSTM models’ encoder and decoder were composed of a single LSTM layer with 128 units, or
a BLSTM layer with 64 units. These models were initialized with the same input data as the models using attention
modules. Compared to the LSTM model, the BLSTM encoder was extended with the concatenation of the forward
and backward states. The architecture of the BLSTM model is depicted in Figure 3.

The RMSprop optimizer with a categorical cross-entropy loss was used for all the training architectures. The
number of epochs varied from 200 to 1000 with a batch size of 256 and the latent dimensions in the range of 64
to 256. These sizes were selected based on initial tests. For Romanian, the networks were also trained for a higher
number of epochs (i.e. 1000), but this did not result in higher values for the accuracy. All implementations were
derived with the help of the Keras5 deep learning library.

5. Results and Discussions

The prediction results of each network architecture for both languages was evaluated in terms of accuracy. This was
calculated for all three tasks jointly by dividing the number of correct predictions by the total number of entries in the
test set. The predictions were considered accurate only if the phonetic transcription, lexical stress and syllabification
were all correct. A separate accuracy measure was calculated by discarding the lexical stress or syllabification, but
using the same predictions made by the networks trained on all three tasks. The accuracy was not calculated for
the combination of lexical stress assignment and syllabification, as the phonetic transcription task was considered
essential for the purpose of creating an enhanced input for the TTS systems.

The results of the English dataset are listed in Table 3. The CNN with Attention model performed the best, achiev-
ing an accuracy of 58.96% on all three concurrent tasks. Character level accuracy calculation was also analyzed as both
the phonetic transcription and lexical stress assignment in English are more complex tasks compared to Romanian.
The highest character level accuracy of 94.94% on all three tasks was achieved by the BLSTM model.

Accuracy results of the Romanian dataset are summarized in Table 4. Again, the CNN with Attention network
performed the best with an accuracy of 86.64% when validated on all three tasks. The prediction values are better
when the lexical stress assignment is ignored, this might be caused by the fact that the Romanian language does not
have specific rules for lexical stress assignment. The OHE and LE input data encoding achieved similar accuracy
values.

3 https://radimrehurek.com/gensim/
4 https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
5 https://keras.io/
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The convolutional architectures are suitable for computer vision as images have a compositional structure; but
also for NLP tasks as texts have a similar formation consisting of sentences, words, n-grams composed of characters
[26]. Convolution layers learn features or aspects of the input data using filters. These filters slide over the representa-
tion of the input data and calculate the dot product between the filter and input to obtain the activation maps that are
passed to the next layer. The output of the network is passed as final step through a fully-connected layer.

The attention mechanism is successfully applied in NLP tasks such as machine translation as it allows the encoder
and decoder to look at the entire input sequence. This is beneficial compared to recurrent architectures where long-
term dependencies can be remembered, but still remain a challenge. The attention is a method that helps the model
focus on important information by calculating the relevance of a set of values based on keys and queries. The attention
weights refer to the relevance of the encoder hidden states (the values) that are calculated based on the decoder hidden
states (query) and encoder hidden states (keys). The output is finally calculated based on the weighted sum of the
values [29].

As the input sequence and output sequences of the tasks targeted in this study are of different lengths, sequence-to-
sequence learning methods [30] are a suitable approach. These architectures include an encoder and a decoder where
the encoder learns a vector representation of the input sequence. Based on this representation the decoder learns how
to predict the next character of the output sequence. Both the encoder and decoder are neural networks that can be
composed of different types of layers. An example input and output sequence of the model is shown in Figure 1.

4. Evaluation

4.1. Datasets

For English, a modified version of the Carnegie Mellon University (CMU) [5] Pronouncing Dictionary was used.
The dictionary was extended by [31] with syllabification information using a Support Vector Machine method. The
results of this method applied on the CELEX lexical database [16] exhibit a 98% accuracy. Examples of the English
training samples are listed in Table 1. The numbers mark the primary, secondary or no stress information for each
vowel, while the hyphen marks the syllable boundaries.

In the Romanian part of the experiments, an augmented version of the MaRePhoR dictionary [32] was used. The
dictionary was extended by [17] with syllabification and lexical stress assignment using the RoSyllabiDict [33] and
DEX Online Database [34] dictionaries. Samples from the dataset entries are exemplified in Table 1. In contrast to the
English entries, there is only a single stress in the Romanian words marked with an apostrophe in the examples. The
hyphen marks the syllable boundaries.

The datasets were split into training and test sets with a ratio of 80 to 20, where the entries for both of the sets were
randomly selected. The same split was maintained for all the evaluations. The number of train and test samples for
each dataset is shown in Table 2.

Table 1: Dictionary entry samples from the syllabified CMU and augmented MaRePhor datasets. The syllabification, lexical stress and phonetic
transcriptions are all combined into one target string in the training data.

English CMU Romanian MaRePhor
Word Lexical information Word Lexical information

SYSTEM s ih1 - s t ah0 m BRUTĂRIE b r u - t @ - r ’ ij - e
CASHIERS k ae2 - sh ih1 r z PACHETUL p a - k j = ’ e - t u l

Table 2: Number of training and test samples per dataset

Dataset Total samples Training samples Test samples
English CMU 129,402 103,522 25,880

Romanian MaRePhor 62,873 56,586 6,287
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In preparation for the network input, the training data was one-hot-encoded (OHE) based on the number of dis-
tinct characters used in the input including the special characters used to mark the syllabification and lexical stress.
For Romanian, letter embeddings (LE) obtained with the help of Gensim3 library were also used. The order of the
embedding was set to 30 and derived from the Romanian Wikipedia pages’ dump.4

4.2. Training architectures and parameters

The details of the four network architectures selected for this study are presented next.
The CNN with Attention model was provided an input layer with the size of the number of input characters (31

for Romanian and 30 for English), followed by 3 convolutional layers with a hidden dimension of 128, kernel size
of 3 and the ReLU activation function. The decoder’s input layer size was set to the number of phonemes tallied up
with the characters marking the syllable boundaries and accents (42 for Romanian and 43 for English). The output of
the encoder and decoders were combined with dot product in the attention module. The output was passed through
a softmax activation layer and the dot product of the result and decoder output were concatenated. This combined
decoder output was passed through 2 convolutional layers followed by 2 dense layers. The architecture of the model
is illustrated in Figure 2.

The LSTM with Attention model uses a similar architecture with the difference that the encoder and decoder are
composed of a single LSTM layer with a hidden size of 256, and the attention module outputs calculated with a dot
product are only passed through two dense layers.

The LSTM and BLSTM models’ encoder and decoder were composed of a single LSTM layer with 128 units, or
a BLSTM layer with 64 units. These models were initialized with the same input data as the models using attention
modules. Compared to the LSTM model, the BLSTM encoder was extended with the concatenation of the forward
and backward states. The architecture of the BLSTM model is depicted in Figure 3.

The RMSprop optimizer with a categorical cross-entropy loss was used for all the training architectures. The
number of epochs varied from 200 to 1000 with a batch size of 256 and the latent dimensions in the range of 64
to 256. These sizes were selected based on initial tests. For Romanian, the networks were also trained for a higher
number of epochs (i.e. 1000), but this did not result in higher values for the accuracy. All implementations were
derived with the help of the Keras5 deep learning library.

5. Results and Discussions

The prediction results of each network architecture for both languages was evaluated in terms of accuracy. This was
calculated for all three tasks jointly by dividing the number of correct predictions by the total number of entries in the
test set. The predictions were considered accurate only if the phonetic transcription, lexical stress and syllabification
were all correct. A separate accuracy measure was calculated by discarding the lexical stress or syllabification, but
using the same predictions made by the networks trained on all three tasks. The accuracy was not calculated for
the combination of lexical stress assignment and syllabification, as the phonetic transcription task was considered
essential for the purpose of creating an enhanced input for the TTS systems.

The results of the English dataset are listed in Table 3. The CNN with Attention model performed the best, achiev-
ing an accuracy of 58.96% on all three concurrent tasks. Character level accuracy calculation was also analyzed as both
the phonetic transcription and lexical stress assignment in English are more complex tasks compared to Romanian.
The highest character level accuracy of 94.94% on all three tasks was achieved by the BLSTM model.

Accuracy results of the Romanian dataset are summarized in Table 4. Again, the CNN with Attention network
performed the best with an accuracy of 86.64% when validated on all three tasks. The prediction values are better
when the lexical stress assignment is ignored, this might be caused by the fact that the Romanian language does not
have specific rules for lexical stress assignment. The OHE and LE input data encoding achieved similar accuracy
values.

3 https://radimrehurek.com/gensim/
4 https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
5 https://keras.io/
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Fig. 2: CNN with Attention model architecture. The encoder and decoder are composed of an input layer followed by 3 convolution layers. The
hidden state outputs of the encoder and decoder are combined in the attention module. The output of the decoder and attention modules are
concatenated and passed through 2 convolution layers and finally the output is calculated by the fully-connected dense layer.

Table 3: Network parameters and accuracy results on the English dataset. Best results are marked in boldface. The columns without syllabification
and without lexical stress refer to the same target data but discard the predictions made for the respective lexical information.

Architecture Data input Epochs / Batch size Accuracy (%)

format / Latent dimension all without without character
tasks syllabification lexical stress level

CNN w Attention OHE 200 / 256 / 128 58.96 59.70 64.00 85.53
LSTM OHE 200 / 256 / 128 52.81 53.41 56.33 90.30
BLSTM OHE 200 / 256 / 64 56.02 56.72 59.71 94.94
LSTM w Attention OHE 200 / 256 / 128 53.79 54.43 57.24 81.15

For both datasets the CNN model with attention achieved the best results. The BLSTM model achieved an accuracy
similar to the CNN based model, but in terms of training time the CNN model was the fastest to train, while the
BLSTM model the slowest. The LSTM models produced the smallest accuracy values, adding an attention layer to the
model increased the accuracy with approximately 1% for both languages. Results validate the addition of the attention
layer, as it increased the accuracy values for the LSTM and CNN networks. The LSTM and BLSTM networks without
attention layers achieved similar accuracy values with the BLSTM slightly outperforming the LSTM model.

These results are similar to those reported in previous studies and are comparable to the ones reported in [1].
Their best accuracy reported on English for the task of phonetic transcription is 64.2% where the input data is aug-
mented with the lexical stress and syllabification information. The CNN with Attention model achieves an accuracy
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Fig. 3: BLSTM model architecture. The encoder is composed of a BLSTM layer. The hidden states and cells of this layer are concatenated and
together with the decoder input data passed to the LSTM layer of the decoder. The output is calculated by passing the output of the decoder through
a fully-connected dense layer.

Table 4: Network parameters and accuracy results on the Romanian dataset. Best results are marked in boldface. The columns without syllabification
and without lexical stress refer to the same target data but discard the predictions made for the respective lexical information.

Architecture Data input Epochs / Batch size Accuracy (%)

format / Latent dimension all without without
tasks syllabification lexical stress

CNN w Attention OHE 200 / 256 / 128 86.64 88.83 93.84
LSTM OHE 200 / 256 / 128 83.17 85.37 90.09
BLSTM OHE 200 / 256 / 64 85.19 87.64 91.51
LSTM w Attention OHE 200 / 256 / 128 84.25 86.62 90.90
CNN w Attention OHE 1000 / 256 / 128 80.91 83.35 88.44
LSTM OHE 1000 / 256 / 128 84.60 86.89 91.19
BLSTM OHE 1000 / 256 / 64 86.10 88.13 92.73
CNN w Attention LE 200 / 256 / 128 85.67 87.82 92.52
LSTM LE 200 / 256 / 128 83.75 85.89 90.14
BLSTM LE 200 / 256 / 64 85.26 87.62 91.65
LSTM w Attention LE 200 / 256 / 128 86.26 88.68 92.87

of 64% when the lexical stress prediction is discarded and the accuracy is calculated based on the correct prediction
of phonemes and syllable boundaries. Our results were achieved on models trained on 103,522 samples compared to
the dataset of 340,265 used in [1].

In both English and Romanian, next to the phonetic transcription that is considered the base task, the lexical stress
assignment prediction fails more often compared to syllabification. Again, this could be interpreted based on the
complexity of the lexical stress assignment in both languages.
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Fig. 2: CNN with Attention model architecture. The encoder and decoder are composed of an input layer followed by 3 convolution layers. The
hidden state outputs of the encoder and decoder are combined in the attention module. The output of the decoder and attention modules are
concatenated and passed through 2 convolution layers and finally the output is calculated by the fully-connected dense layer.

Table 3: Network parameters and accuracy results on the English dataset. Best results are marked in boldface. The columns without syllabification
and without lexical stress refer to the same target data but discard the predictions made for the respective lexical information.

Architecture Data input Epochs / Batch size Accuracy (%)

format / Latent dimension all without without character
tasks syllabification lexical stress level

CNN w Attention OHE 200 / 256 / 128 58.96 59.70 64.00 85.53
LSTM OHE 200 / 256 / 128 52.81 53.41 56.33 90.30
BLSTM OHE 200 / 256 / 64 56.02 56.72 59.71 94.94
LSTM w Attention OHE 200 / 256 / 128 53.79 54.43 57.24 81.15

For both datasets the CNN model with attention achieved the best results. The BLSTM model achieved an accuracy
similar to the CNN based model, but in terms of training time the CNN model was the fastest to train, while the
BLSTM model the slowest. The LSTM models produced the smallest accuracy values, adding an attention layer to the
model increased the accuracy with approximately 1% for both languages. Results validate the addition of the attention
layer, as it increased the accuracy values for the LSTM and CNN networks. The LSTM and BLSTM networks without
attention layers achieved similar accuracy values with the BLSTM slightly outperforming the LSTM model.

These results are similar to those reported in previous studies and are comparable to the ones reported in [1].
Their best accuracy reported on English for the task of phonetic transcription is 64.2% where the input data is aug-
mented with the lexical stress and syllabification information. The CNN with Attention model achieves an accuracy
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Fig. 3: BLSTM model architecture. The encoder is composed of a BLSTM layer. The hidden states and cells of this layer are concatenated and
together with the decoder input data passed to the LSTM layer of the decoder. The output is calculated by passing the output of the decoder through
a fully-connected dense layer.

Table 4: Network parameters and accuracy results on the Romanian dataset. Best results are marked in boldface. The columns without syllabification
and without lexical stress refer to the same target data but discard the predictions made for the respective lexical information.

Architecture Data input Epochs / Batch size Accuracy (%)

format / Latent dimension all without without
tasks syllabification lexical stress

CNN w Attention OHE 200 / 256 / 128 86.64 88.83 93.84
LSTM OHE 200 / 256 / 128 83.17 85.37 90.09
BLSTM OHE 200 / 256 / 64 85.19 87.64 91.51
LSTM w Attention OHE 200 / 256 / 128 84.25 86.62 90.90
CNN w Attention OHE 1000 / 256 / 128 80.91 83.35 88.44
LSTM OHE 1000 / 256 / 128 84.60 86.89 91.19
BLSTM OHE 1000 / 256 / 64 86.10 88.13 92.73
CNN w Attention LE 200 / 256 / 128 85.67 87.82 92.52
LSTM LE 200 / 256 / 128 83.75 85.89 90.14
BLSTM LE 200 / 256 / 64 85.26 87.62 91.65
LSTM w Attention LE 200 / 256 / 128 86.26 88.68 92.87

of 64% when the lexical stress prediction is discarded and the accuracy is calculated based on the correct prediction
of phonemes and syllable boundaries. Our results were achieved on models trained on 103,522 samples compared to
the dataset of 340,265 used in [1].

In both English and Romanian, next to the phonetic transcription that is considered the base task, the lexical stress
assignment prediction fails more often compared to syllabification. Again, this could be interpreted based on the
complexity of the lexical stress assignment in both languages.
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6. Conclusions

Four different model architectures concurrently predicting the phonetic transcription, syllabification and lexical
stress assignment on English and Romanian datasets were evaluated in this work. The output of these models aims to
provide enhanced input for TTS systems by reducing the computational cost of deriving each linguistic information
individually. For both languages, the networks composed of convolution layers combined with attention modules
performed the best, achieving an accuracy of 86.64% for Romanian and 58.96% for the English dataset. The recurrent
architectures comprising LSTM and BLSTM layers achieved similar accuracy and the addition of attention layers to
the models increased the accuracy results. The fact that there are only slight differences between the architectures’
results means that the sequence-to-sequence models with attention layers are suited for this task’s complexity, and
that any increase in the accuracy could be derived from larger training datasets, or by employing incremental learning
methods.
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6. Conclusions

Four different model architectures concurrently predicting the phonetic transcription, syllabification and lexical
stress assignment on English and Romanian datasets were evaluated in this work. The output of these models aims to
provide enhanced input for TTS systems by reducing the computational cost of deriving each linguistic information
individually. For both languages, the networks composed of convolution layers combined with attention modules
performed the best, achieving an accuracy of 86.64% for Romanian and 58.96% for the English dataset. The recurrent
architectures comprising LSTM and BLSTM layers achieved similar accuracy and the addition of attention layers to
the models increased the accuracy results. The fact that there are only slight differences between the architectures’
results means that the sequence-to-sequence models with attention layers are suited for this task’s complexity, and
that any increase in the accuracy could be derived from larger training datasets, or by employing incremental learning
methods.
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The use of text-to-speech to generate radio content is largely unexplored, despite the importance of radio in remote parts of the world,
where TTS offers a robust means of transforming data into media for low-literate audiences and those without regular internet access.
How suitable are TTS voices for meeting the expectations of radio listeners and what type of content are these voices best suited to
deliver? We present an application for generating automated daily synthesized weather forecasts for selected locations and language
varieties, based on the provision of a regularly updated weather data service. We present results from a pilot listener study aimed at
exploring people’s reactions to this and other synthesized audio content, as we begin to explore best practices around the design of a
synthesized content feed system for community radio.
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[Good morning] [location]. The forecast for thismorning from [6:00] is [clear sky], with a temperature of [10]
degrees, with wind of [8,2] meters per second in the [easterly] direction. The forecast for the [afternoon] from
[12:00] to [18:00] is [cloudy], with a temperature of [10] degrees, with wind of [5,8] meters per second in the
[south-west] direction. Weather forecast provided by YR.no application, the Norwegian Meteorological Institute and
NRK.

1 INTRODUCTION

As DIY synthetic speech voices become easier to generate - for example using free, open source toolkits such Idlak
[8] - we can expect the use of text-to-speech (TTS) to expand to a greater number of use cases over the coming years.
Through our interactions with Alexa, Siri and other personal digital assistants, we are gradually becoming aware of
some of the possibilities and limitations of interacting with high-quality TTS voices [1, 6, 7] and the complex social
implications of speech technology voice choices [3, 4]. We are also encountering an increasing array of uncanny valley
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phenomena around the use of TTS voices in varying contexts, such as the recent Google Assistant haircut appointment
demo, described by one YouTube commenter as "[a]n AI with near perfect vocal fry" 1.

However, personal digital assistants are far from being the only application of synthetic speech. Apart from [10],
much remains to be explored for uncovering listener needs and preferences around the use of TTS in broadcasting, and
radio in particular. And yet TTS is poised to play a pivotal role in the success and longevity of both commercial and
community stations. As part of a European consortium dedicated to expanding and augmenting an open technology
stack for low-power FM community radio stations [5], we are particularly focused on the needs of our community
partners (e.g. in rural Romania) for ensuring that stations are sustainable and do not violate their state granted licensing
agreements. For our Romanian stations, this means providing non-stop, 24/7 broadcast content. Thus, given the task
of designing and integrating purpose-built TTS applications within our FM radio technology stack, we start with the
initial assumption that some amount of TTS will be deemed acceptable, and even necessary, by our local partners and
their listening audiences. However, questions remain as to what other types of TTS content would be appropriate, as
well as the type of synthetic voice (or voices) to use.

We present an automated synthesized audio weather forecast generator, which was designed through collaborating
stations managers and volunteers and which we plan to extend to further content types for broadcast. We include
results of our preliminary listening study of the generated and proposed content with Romanian speakers residing in
Romania.

2 AUTOMATEDWEATHER FORECAST APPLICATION

In conversations between the Romanian station managers and the fishermen chief in one of the communities, it was
determined that weather and wind speed and direction forecast information are crucial for them. Current practice is to
view this data from a variety of more weather web-sites, however, not everyone has access to computers and internet,
and a regularly updating forecast heard over the radio would be valuable.

Forecast data is pulled from Yr.no, an open source weather data service. The application is scheduled to update three
times daily. On update it pulls the most current forecast data from the service and inserts it into a pre-written script
which is then converted to synthetic speech using the Cerecloud API [2]. The resulting audio file is saved to a server
location which is configured to be accessed as an RSS feed, allowing the updated audio file to be added to the schedule
of station software such as RootIO [5].

Fig. 1. An example weather forecast script with variable values in bold. Translation: Good morning Sfântu Gheorghe. The forecast
for this morning from 6:00 is clear sky, with a temperature of 10 degrees, with wind of 8,2 meters per second in the easterly direction.
The forecast for the afternoon from 12:00 to 18:00 is cloudy, with a temperature of 10 degrees, with wind of 5,8 meters per second in the
south-west direction. Weather forecast provided by YR.no application, the Norwegian Meteorological Institute and NRK

1https://www.youtube.com/watch?v=yDI5oVn0RgM)
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3 LISTENING TEST

In order to assess the viability of the generated content and to better understand potential preferences around broad-
casting different types of TTS content, we conducted a listener test using clips of synthesized voices reading out content
generated by our synthesized weather feed application. In addition to the weather clips, we also presented listeners with
clips of synthesized news and cultural content as an initial effort to explore different TTS voice and content pairings,
and for guiding future design decisions with respect to leveraging TTS for community radio.

Fig. 2. A translated excerpt of one of the cultural content scripts. Original taken from http://casapentrucultura.ro/

3.1 Methodology

A total of 17 participants, nine female and eight male ages 22 to 56 took part in an online listening test. All were
Romanian nationals who had a background in engineering or speech engineering. Four participants, additionally
participated in a 15-minute follow-up interview, which were conducted in English. Participants were asked to assess
each audio clip in terms of four adjectival descriptors (coherent, suitable for radio, trustworthy, attractive) 2, as measured
on a seven-point Likert scale. All audio and written survey content was presented in Romanian using a modified version
of the webMUSHRA audio survey software [9].

Fig. 3. Introduction to the online listening test. Translation: In the following you will be presented with a series of audio clips of radio
shows. You will notice that some of them contain synthesized voice. The purpose of using synthesized voice is not to replace radio presenters,
but to add resources and functionality to radio stations. For example, even a radio station in a small community is forced to broadcast
24 hours of unique content. Using synthesized voices, existing information or text extracted from Internet resources, can be broadcast to
people who have no other access to them. Please listen to the following audio clips and consider how you would feel if they were broadcast
by a radio station that you listen to in your community.

Participants rated a total of 15 audio clips, each of which featured ambient radio noise, such as tuning static, in-
between clips. The clips distributed represent three content types - news, weather (see figure 1) and culture (see figure 2)
- and were presented in a randomized order. Three different TTS voices were included in the test: two SWARA voices
2In Romanian: coerent adecvat pentru radio, de încredere, atractiv. - with the Romanian words in italics
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[11], including a male (IPS) and a female (BAS) voice; and a high-quality ’characterful’ female voice, created by Cereproc
(CER) [2]. The two SWARA voices were generated using an HMM-based statistical parametric speech synthesiser, while
the Cereproc voice was derived using a proprietary unit selection method that is generally perceived to yield more
human-sounding TTS voices.

3.2 Results

3.2.1 Ratings by Content Type. The graph in Figure 4a shows the differences in ratings between clips of different content
types. The differences were then analyzed using one-way repeated measure ANOVA tests through the statsmodels
package in Python (version 3.7.5). Differences between content type ratings were found to be significant for the
descriptors "coherent", "suitable for radio" and "attractive", while differences among "trustworthy" ratings were not
statistically significant. A post-hoc analysis comparing ratings by content type was conducted for the descriptors
"coherent", "suitable for radio" and "attractive" using pairwise t-tests. Cultural clips were rated as significantly less
coherent (M=4.44; SD=1.52) than news clips (M=4.88; SD=1.52). Cultural clips were also rated as significantly less
suitable for radio (M=3.94; SD=1.62) than news (M=5.03;SD=1.65) or weather (M=4.96; SD=1.59) clips. There was no
significant difference between ratings of news and weather on ratings of coherence. Cultural and weather clips were
rated as significantly less attractive (cultural M=3.41, SD=1.77; weather M=3.73 SD=1.64) than news clips (M=4.33
SD=1.63).

(a) Mean score, with standard error, on four measures (co-
herent, suitable for radio, trustworthy, attractive) for clips of
each of the three content types (news, weather, culture

(b) Mean score, with standard error, on four measures (co-
herent, suitable for radio, trustworthy, attractive) for clips of
each of the three voices (BAS, LIS, CER

Fig. 4. Results of listening test by content type and voice

3.2.2 Ratings by voice. We additionally used one-way repeated measure ANOVA tests were used to examine the
differences in ratings per synthesized voice; the results are shown in Figure 4b. Differences between TTS voices were
found to be significant for the descriptors "suitable for radio" and "attractive", while differences for the descriptors
"coherent" and "trustworthy" were not statistically significant. Again, a post-hoc analysis comparing ratings by synthetic
voice was conducted for the descriptors "attractive" and "suitable for radio" using pairwise t-tests. Clips featuring the
BAS voice (i.e. the lower quality SWARA female voice) were rated significantly lower on both attractiveness (M=3.36;
SD=1.66) and suitability for radio (M=4.19; SD=1.76) than clips featuring the CER (attractive M=4.03, SD=1.80; suitable
M=4.73, SD=1.70) and IPS (attractive M=4.0, SD=1.67; suitable M=4.71, SD=1.64) voices. There was no significant
difference distinguishing clips with the CER and IPS voices on measures of attractiveness and suitability for radio.
Manuscript submitted to ACM



Designing a Synthesized Content Feed System for Community Radio 5

3.3 Discussion

The results indicate that the category of content being read out by our three synthetic voices can have an impact on the
audio clip’s perceived coherence, suitability for radio and attractiveness. However, we saw no significant effect of content
type on the perceived trustworthiness of audio clips. Cultural content was rated below weather and news in terms of
the clips’ relative coherence and suitability for radio. With respect to perceived attractiveness, news ranked higher than
both weather and culture. The overall acceptability of synthetic speech for broadcasting weather information has been
documented in previous work. However, the current study appears to show that though it may be considered acceptable,
it may not be considered ’attractive’. Our results further suggest that the use of TTS voices to broadcast news content
may be deemed as good as or better than using TTS to broadcast weather information. The lower ratings observed for
cultural clips indicates that additional research is needed to explore appropriate uses of synthesized content that go
beyond "informative" to conveying more general interest or esoteric types of information.

When interviewed about their radio listening habits, participants identified a wide variety of preferred content
(music, current events debates, listener call-in shows on politics, culture, and etc.). However, all four interviewees stated
that they stop listening when the programming segues into content that they deem as being uninteresting. P1, for
example, explained that they do not listen to political content because "the way politics is covered ... is not relevant to
my life right now, I can’t relate to it." We expect this dynamic will pose even more challenges for the appropriate design
of synthesized radio content.

In terms of the effects the different TTS voices had on our listener judgments, the only significant difference we
observed concerned clips read by the female SWARA ’BAS’ voice, which participants rated as less attractive and less
suitable for radio than the other two TTS voices. In interviews, participants described the BAS voice as high-pitched,
"annoying’, and featuring unnaturally pauses (P1); and as "too rapid" and "hard to listen to for more than a few minutes."

Overall, participants rated the voices as sufficiently intelligible, as supported by the fact that no significant difference
in coherence rating per voice was observed. Interestingly, interviewees provided some subjective and unexpected
perceptions of the voices they heard during the listening test. Two of the interviewees reported hearing four or more
different voices, while another interviewee made frequent mention of a "baby" or "child" voice, which they found
disconcerting.

4 LIMITATIONS AND FUTUREWORK

Given the paucity of studies focused on TTS for broadcasting, and for non-English language use cases in general, this
preliminary listener study offered some interesting initial observations on perceptions of long-form synthetic speech as
media content. Our future work will focus on further examining the interaction between voice and content type, as we
seek to better understand and document best practices in the design of widely acceptable forms of synthesized news and
weather content. Additionally, the acceptability and usefulness of this kind of content within the context of a specific
community radio stations needs to be examined further through research and design within the given communities.
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ABSTRACT

Quantifying the confidence (or conversely the uncertainty) of a
prediction is a highly desirable trait of an automatic system, as
it improves the robustness and usefulness in downstream tasks.
In this paper we investigate confidence estimation for end-to-
end automatic speech recognition (ASR). Previous work has
addressed confidence measures for lattice-based ASR, while
current machine learning research mostly focuses on confi-
dence measures for unstructured deep learning. However,
as the ASR systems are increasingly being built upon deep
end-to-end methods, there is little work that tries to develop
confidence measures in this context. We fill this gap by provid-
ing an extensive benchmark of popular confidence methods on
four well-known speech datasets. There are two challenges we
overcome in adapting existing methods: working on structured
data (sequences) and obtaining confidences at a coarser level
than the predictions (words instead of tokens). Our results
suggest that a strong baseline can be obtained by scaling the
logits by a learnt temperature, followed by estimating the con-
fidence as the negative entropy of the predictive distribution
and, finally, sum pooling to aggregate at word level.

Index Terms— Confidence scoring, uncertainty estima-
tion, automatic speech recognition, end-to-end deep learning

1. INTRODUCTION

Reasoning under uncertainty is one of the tenets of intelli-
gence. The first step towards this goal is to endow systems
with reliable uncertainty estimates of their predictions. Ide-
ally, the larger the uncertainty the more likely the prediction
is erroneous. Alternatively, one can solve the complemen-
tary problem of confidence estimation—in this case, the more
confident a prediction, the more likely the output is correct.

In the context of automatic speech recognition (ASR) con-
fidence estimation can be of crucial importance for many end-
user applications, as it improves the robustness of the sys-
tems in safety-critical tasks, helps avoiding errors in human-
computer dialogue systems and facilitates manual corrections
in audio transcription tasks by flagging the errors. Moreover,
previous research has leveraged confidence estimates for a

number of downstream tasks: propagating uncertainties for au-
tomatic speech translation [?], selecting confident predictions
for self-training [?], manually annotating the less confident
predictions for active learning [?].

In this paper we consider confidence estimation for end-
to-end ASR systems, also known as lattice-free speech recog-
nition [?]. End-to-end models for ASR are gaining traction
recently as their performance matches the one of classical ASR
and have the additional benefits of being conceptually simple
and allowing unified training [?, ?, ?]. However, there is sur-
prisingly little work on confidence estimation for end-to-end
speech recognition systems, most of the ongoing research on
confidence estimation being carried on computer vision tasks
(image classification or segmentation). We believe that there
are two main challenges of developing confidence scoring
methods for ASR systems: the structured output of the ASR
systems and the more granular predictions than what one is
usually interested in (e.g., tokens versus words).

ASR systems are structured models (mapping sequences
to sequences) as opposed to usual recognition networks (such
as, image classification) whose output is a single label. The
sequential nature of the output imposes a decoding step, which
complicates not only the prediction but also the confidence
scoring algorithm, as we need estimate the confidence in an
auto-regressive context (the already predicted sequence). For
this reason, we fix the predictions based on a pre-trained ASR
and apply the confidence scoring methods on top of token
probabilities, which are conditioned on the fixed transcript.

In order to enable open vocabulary predictions, end-to-end
ASR systems usually use subword tokens to represent the out-
put (byte-pair encoded tokens or even graphemes). However,
given that the tokens lack semantics, for many downstream
applications we are interested in estimating the confidence of
words. To this end, we explore ways of aggregating the token-
level uncertainty measures to the larger units, corresponding
to words; in fact, the presented techniques can be extended to
even coarser predictions, such as sentence or utterance level.

In this context, our main contributions are the following: (i)
we adapt several state-of-the-art uncertainty estimation meth-
ods to the end-to-end ASR pipeline; (ii) we propose and evalu-
ate aggregation techniques to obtain user-relevant confidence
estimates (i.e. word-level); (iii) we perform a thorough evalu-



ation on multiple speech benchmark datasets. To the best of
our knowledge, this is the first study that provides an in-depth
analysis of confidence measures for end-to-end ASR.

2. RELATED WORK

In this section we review two lines of research that are related
to our work.

Confidence scoring for speech recognition. Most prior
work on confidence scoring for ASR targets classical systems
based on the HMM-GMM paradigm. These methods first ex-
tract a set of features from the decoding lattice, acoustic or
language model, and then train a classifier to predict whether
the transcription is correct or not. Typical examples of features
include log-likelihood of the acoustic realization, language
model score, word duration, number of alternatives in the con-
fusion network [?, ?, ?]. More recently, Swarup et al. have
augmented the feature set with deep embeddings of the input
audio and the predicted text [?], while Errattahi et al. have
shown that the benefits of domain adaptation on the extracted
features [?]. The classifiers employed by the confidence scor-
ing methods range from conditional random fields [?, ?] and
multiple layer perceptrons [?] to bidirectional recurrent neural
networks [?, ?, ?].

Confidence scoring in end-to-end systems. The baseline
method for confidence estimation in neural networks is to
use directly the probability of the most-likely prediction [?].
However the neural networks tend to be overconfident and the
probability estimates can be improved through temperature
scaling [?], which typically leads to better calibration [?, ?].
The most promising direction in terms of simplicity and use-
fulness involves Monte Carlo estimation: Gal and Ghahramani
use dropout at test time to obtain multiple predictions, which
are then averaged [?], while Lakshminarayanan et al. average
the predictions over an ensemble of networks usually trained
with different initializations [?]. The latter has been show to
be very reliable on challenging out-of-domain datasets [?],
but coming at a high cost [?]. A different approach to confi-
dence scoring is to learn a classifier (typically another neural
network) directly on top of the network activations [?, ?].

At the intersection of these two research directions, there
is the recent work of Malinin and Gales [?], which similar to
us addresses the task of confidence estimation for end-to-end
ASR systems. However, they are concerned with token and
sentence uncertainty estimation, while we are interested in esti-
mation at word level, and, consequently, provide more focus on
the aggregation techniques. Furthermore, they employ ensem-
bles as their primary method of confidence estimation, while
we also evaluate temperature scaling and dropout methods.
While dropout was previously used for obtaining confidence
scores for ASR [?], the method is different from our approach.
In [?] the authors generate multiple hypotheses via dropout
and then assign confidences to words based on the frequency
of their appearances in the aligned hypotheses. In contrast, we

aggregate the posterior probabilities and not the hypotheses,
which simplifies the procedure as it avoids the alignment step.

3. METHODOLOGY

This section presents the confidence estimation methodology
and proposed ways of improving the them. We first start with
a description of the setup and the involved notation.

We consider a sequence-to-sequence model that maps an
audio sequence a to a sequence of tokens t = (t1, · · · , tT ).
The model is specified by the parameters θ, which are learned
by minimizing losses such as the CTC or KL divergence on
the training set. At test time the model outputs probabilities for
the next token k in an autoregressive manner p(tk|t̂<k,a; θ)
based on the already predicted tokens t̂<k. These probabilities
are used for performing decoding via beam search to obtain
the most likely sequence of tokens. Given that the conditioned
output probability is a distribution over the V tokens in the
vocabulary, we denote it by a V -dimensional vector, pk.

3.1. Confidence estimation

Our goal is to obtain a confidence score for each word in the
output transcript of the ASR. We achieve this in two steps.
First, using the posterior probabilities at each time step pk, we
extract features to encode the confidence score of each token
s
(t)
k . Second, we aggregate the token-level scores into word-

level confidence scores s(w)j , based on the word boundaries.
Next we detail these two steps; see also figure 1.

Feature extraction. To measure the confidence in a pre-
diction at token level we use two variants:

• Log probability (log-proba) of the most probable pre-
diction given by classifier, that is s(t) = logmaxp.
This type of feature has been shown to yield a strong
baseline for the related tasks of misclassification and
out-of-distribution detection [?].

• Negative entropy (neg-entropy) computed over the vo-
cabulary of tokens at each time stamp, that is s(t) =
pᵀ logp. A large entropy means a large uncertainty or,
conversely, a large negative entropy implies a confident
prediction. While entropy is usually employed as a con-
fidence measure when used with the dropout technique
[?], it is by no means restricted to this usage, and can be
also applied on the original probabilities.

Aggregation. To obtain word-level features from the
token-level ones, we experiment with three types of aggre-
gation functions: sum, average, minimum. Since both pro-
posed features are negative, summing across tokens will result
in smaller values and, hence, in lower confidences; this be-
haviour can be desirable as longer words are more likely to be
erroneous (see figure 2). Also, when we sum the log probabil-
ity of the tokens, we obtain a word-level score corresponding
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Fig. 1. Overview of the confidence scoring procedure. From an end-to-end ASR system we obtain probabilities pk of the k-th
token given an utterance a and previously predicted tokens t̂<k. Based on these probabilities we extract token-level confidence
scores s(t), which we then aggregate to obtain scores at word level s(w). The size of the token vocabulary is denoted by V , the
number of tokens is denoted by T and the number of words by W .

to the log probability of the entire sequence. Taking minimum
is justified by the fact that we might want a low confidence if
at least one of the tokens has low confidence.

3.2. Improving the token probabilities

We propose three ways to make the token probabilities reliable:
temperature scaling, dropout and ensembles of models. Our
assumption is that by improving the token probabilities, we
also improve the word-level scores.

Temperature scaling [?, ?] consists of dividing the logit
activations (pre-softmax values) by a scalar τ (known as tem-
perature). The value of τ ranges from zero to infinity and it
controls the shape of the distribution: when τ → 0 we ob-
tain a uniform distribution, when τ → ∞ we obtain a Dirac
distribution on the most likely output. Based on τ we update
token-level probabilities p at each time stamp k, as follows:

p′
k = softmax(log(pk)/τ). (1)

We then extract features s(t) on the updated probabilities
p′, aggregate them into the word-level score s(w) and, finally,
classify the word as either correct or incorrect:

P (correct) = σ(α · s(w) + β). (2)

The variables α, β and τ are parameters and are learnt
by optimizing the cross-entropy loss on a validation set. The
labels are set at word level by aligning at the groundtruth text
with the transcription. Note that the parameters α and β are
not changing the ranking of the predictions, but allow us to
learn a calibrated confidence model.

Dropout [?] is a technique that masks out random parts of
the activations in a network, making the network less prone
to overfitting. In [?] it has been observed that the dropout in-
duces a probability distribution over the weights of the network
and can be consequently used for approximate Bayesian infer-
ence. We follow this idea and average the token probabilities
obtained over multiple runs of dropout:

p′
k =

1

N

∑
n

p̂k (3)

where p̂ specifies the dropout prediction. The updated proba-
bilities are then used to extract either of the uncertainty features
(log-proba or neg-entropy).

Ensembles [?] are based on the same idea of averaging
predictions from multiple sources, but in this case the set of
weights come from independently trained networks (different
random seeds used in initialization, batch selection etc.)In our
case, we average the token predictions over the models:

p′
k =

1

N

∑
n

p(tk|t̂<k,a; θn), (4)

where {θn}Nn=1 specifies the ensemble of models. Note that
we need to have the same context t̂<k for all models in the
ensemble, so we use the one given by a pre-trained model.

The three presented approaches can be combined; for ex-
ample, we can first update the probabilities using temperature
scaling then average them using dropout. In the experimental
section we will evaluate all these combinations.

4. EXPERIMENTAL SETUP

In this section, we describe the datasets used for evaluation,
the ASR systems for which we build confidence estimates, and
the evaluation metrics.

4.1. Datasets

We have opted for multiple publicly-available and widely-used
datasets for our experimental setup.

LibriSpeech [?] is a corpus of approximately 1000 hours
of read audiobooks. The data was derived from the LibriVox
project and has been carefully segmented and aligned. We use
the dataset for both training and evaluation. For training we
use the three splits clean100, clean360 and other500,
while for development and evaluation we use the standard
clean and other splits.

TED-LIUM 2 [?] consists of talks and their transcripts col-
lected from the TED website. We use the dataset for evaluation



Table 1. Size of the datasets (test split) used for confidence
estimation evaluation.

dataset no. utts. duration

Libri clean 2.6K 5.4 h
Libri other 2.9K 5.3 h

TED 1.1K 2.6 h
CommonVoice 66K 72 h

and consequently employ only the pre-defined dev and test
subsets.

CommonVoice [?] is a collaborative dataset of short tran-
scripts that are read by people across the world. There are
multiple releases of the dataset and we have used the first re-
lease.1 We use the dataset for evaluation and we defined dev
and test subsets by choosing 10% random samples for each
of them.

Table 1 presents the test split sizes for each of the evalu-
ation datasets.

4.2. ASR systems

The main ASR system is based on the pre-trained LibriSpeech
model provided by the ESPNet toolkit [?]. The model im-
plements the transformer architecture [?] and takes as input
80-dimensional Mel filter banks (extracted with the Kaldi
toolkit [?]) and outputs a sequence of tokens. The token vo-
cabulary has dimension 5000 and is obtained by subword
segmentation based on a unigram language model [?]. The
model is trained on the 960h of the LibriSpeech dataset, which
is further augmented using the SpecAugment techniques (time
warping, frequency masking, time masking) [?]. For decoding
we use a language model, which is also implemented as a
transformer and is trained on the LibriSpeech transcriptions
and other 14,500 public domain books [?]. The vocabulary of
the language model consists of the same 5000 tokens as used
by the ASR model.

For the ensemble experiments we re-train the ASR system
using the same architecture and data, but different random
seeds. We repeat the process four times obtaining four in-
dependent models. Due to computational constraints, these
models were trained for a shorter number of epochs than the
main system (10 versus 120), but we observed that the val-
idation loss function curve began to flatten and that the test
performance is reasonable (5.5%±0.4 WER on Libri clean vs
2.7 obtained by the pre-trained model).

4.3. Evaluation metrics

Ideally, we want the confidence score to be correlated with the
correctness of the transcription, that is, correct words should

1https://common-voice-data-download.s3.amazonaws.
com/cv_corpus_v1.tar.gz
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Fig. 2. Fraction of errors as a function of the word length.
The fraction of errors is computed as the number of erroneous
words divided by the total number of words, while the word
length is measured as number of tokens.

have large confidence score, while incorrect ones, low score.
Following previous work [?, ?, ?], we employ metrics that
are generally used for evaluating binary classifiers, but which
have the discrimination threshold varied. More precisely, we
measure the area under precision-recall curve (AUPR) and the
area under receiver operating characteristic curve (AUROC).
However, depending on what we want to focus (errors or
correct predictions) we obtain different variants: if we are
interested in misclassifications, we will treat the errors as the
positive class; on the other hand if we are interested in the
correct classification, we will treat the successful detections
as the positive class. Hence, for AUPR we use two variants
AUPRe (when errors are treated as positives) and AUPRs
(when successes are treated as positives). For AUROC the
same value is obtained for either choice, so there is no need to
make this distinction.

5. RESULTS AND DISCUSSION

This section presents the experimental results. We start with an
evaluation of features and their aggregations (§5.1), and then
report results for the improved variants involving temperature
scaling, dropout (§5.2) and ensembles (§5.3). We conclude the
section with a discussion.

5.1. Features and aggregation

We evaluate the proposed uncertainty features and aggregation
techniques on the four datasets described in subsection 4.1. We
use the pre-trained model to obtain text predictions for all the
audio files in the test split of each dataset, and then estimate the
confidence based on the methodology described in subsection
3.1. Table 2 presents the results for all combinations of features
and aggregations.

Comparison of features. We observe that log probability
features outperform the entropy features across all settings



Table 2. Confidence scoring results for combinations of features and aggregations on the four test splits. For all three metrics
reported metrics (AUPRe, AUPRs, AUROC) larger values are better. We indicate the word error rate of the pre-trained ASR
system on each of the dataset by the figures on the right of the name.

Libri clean / 2.7% Libri other / 6.0% TED / 13.3% CommonVoice / 28.6%

feat. agg. AUPRe AUPRs AUROC AUPRe AUPRs AUROC AUPRe AUPRs AUROC AUPRe AUPRs AUROC

1 log-proba sum 21.55 99.21 82.41 29.99 98.10 81.75 39.97 95.88 79.95 48.98 77.71 64.84
2 log-proba min 21.85 99.19 82.47 28.64 98.06 81.66 39.74 95.94 80.58 46.79 76.74 62.67
3 log-proba avg 20.12 99.10 80.90 26.72 97.93 80.47 38.74 95.88 80.29 44.51 75.82 60.87

4 neg-entropy sum 17.31 99.10 79.97 26.37 97.86 79.58 34.96 95.41 77.57 47.71 77.10 63.74
5 neg-entropy min 19.94 99.09 80.55 26.75 97.82 79.64 37.55 95.56 79.01 45.51 76.00 61.21
6 neg-entropy avg 17.55 98.95 77.72 24.26 97.59 77.46 36.28 95.42 78.29 42.64 74.83 58.75

(aggregations and datasets). The only notable exception is the
CommonVoice dataset where the results are comparable.

Comparison of aggregations. Generally, the sum aggre-
gation works better with log-proba features, while the min
aggregation works better for entropy features. The sum might
not be well suited for entropy features because their magnitude
is larger than for log-proba and the word confidence gets pe-
nalized too much by the length; but, as we will see further, this
behaviour can be alleviated by temperature scaling. Averaging
is generally underperforming for both features, suggesting that
length-invariant measures are detrimental. Indeed, a closer
look at the frequency of errors with the length size indicates
that the more tokens a words has the more likely is that is
incorrect, see figure 2.

Comparison across datasets. As expected the pre-trained
model performs best on in-domain data (2.7% WER on Libri
clean and 6.0% on Libri other), the performance then dropping
sharply as we evaluate on out-of-domain data (13.3% on TED
and 28.6% on CommonVoice). In each of these settings the
number of words that are correctly classified change, going
from more on the Libri splits to fewer on TED and Common-
Voice. This observation explains why the performance for
AUPRs drops as a function of the domain of the data, and,
conversely, why the AUPRe performance improves. Unfor-
tunately, for this exact reason—the different performance of
the base ASR system on the four datasets—it is impossible to
compare the confidence methods across datasets, as they use a
different groundtruth [?].

5.2. Temperature scaling and dropout

We benchmark the confidence scoring method after improving
the token probabilities by two of the described techniques:
temperature scaling and dropout. We use the pre-trained ASR
system and report results only on the TED test set. The parame-
ters for temperature scaling method are learnt on the dev split
of the TED dataset for each setting of feature and aggregation.
When temperature scaling is combined with dropout we first
apply the temperature scaling (using the same temperature)
and the follow with the aggregation over dropout. The dropout

Table 3. Confidence scoring results on the TED test set for
combinations of features, aggregations and their improved
variants – temperature scaling (TS) and dropout (D). The
bullet sign • indicates whether a variant is employed. Bold
results indicate the best results for the feature-aggregation
combination; these results show that using both temperature
scaling and dropout yields the best results.

feat. agg. TS D AUPRe AUPRs AUROC

1

log-proba sum

39.97 95.88 79.95
2 • 41.41 96.81 82.78
3 • 40.92 96.19 81.11
4 • • 42.99 97.14 84.10

5

log-proba min

39.74 95.94 80.58
6 • 42.08 96.94 83.76
7 • 39.84 95.98 80.74
8 • • 42.17 97.00 83.93

9

log-proba avg

38.74 95.88 80.29
10 • 41.19 96.95 83.73
11 • 38.97 95.99 80.66
12 • • 41.32 97.06 84.08

13

neg-entropy sum

34.96 95.41 77.57
14 • 33.14 96.22 79.45
15 • 42.16 96.91 83.50
16 • • 43.59 97.62 85.51

17

neg-entropy min

37.55 95.56 79.01
18 • 38.75 96.53 81.98
19 • 41.23 96.87 83.50
20 • • 42.23 97.60 85.51

21

neg-entropy avg

36.28 95.42 78.29
22 • 38.01 96.51 81.85
23 • 40.22 96.53 82.48
24 • • 41.15 97.43 85.18
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Fig. 3. AUPRe performance as a function of the number of
dropout runs on the TED test set. The horizontal red line in-
dicates the performance of the model without dropout. The
model uses neg-entropy features, sum aggregation and temper-
ature scaling.

Table 4. Confidence scoring results on the TED test set for
combinations of temperature scaling (TS), dropout (D) and
ensembles (E), using neg-entropy as features and sum as ag-
gregation. The bullet sign • indicates whether a variant is
employed.

TS D E AUPRe AUPRs AUROC

1 28.58 95.30 75.79

2 • 32.00 96.32 79.47
3 • 27.49 95.51 75.67
4 • 30.89 96.26 78.89

5 • • 31.10 96.40 79.06
6 • • 34.57 96.95 81.64
7 • • 28.94 96.26 77.93

8 • • • 33.00 96.84 80.82

method averages 64 independent predictions. Table 3 presents
the results for all combinations of features and aggregations
and improvement techniques.

The results indicate that both proposed methods improve
the results as is their combination, which gives overall the best
result. We observe that log-proba features benefit more from
dropout, while the neg-entropy feature yield more improve-
ments when temperature scaling is used. Interestingly, the best
results are now obtained for the neg-entropy with sum aggre-
gation (row 16). Figure 3 shows that the dropout performance
improves with the number of runs and plateaus around the
chosen value of 64.

5.3. Ensembles

We present results for confidence scoring using ensembles
of models and their combinations with the other improved

versions (temperature scaling and dropout). For each of the
retrained models from the ensemble we use the predictions
of the pre-trained model to select the transcription; the re-
trained model is just used for confidence scoring, by extracting
the confidence features described previously. The results are
presented in table 4. For the rows that do not use ensemble
(rows 1, 2, 3 and 5) we evaluate each of the four single models
independently and report the mean performance.

The pre-trained model (table 3, row 13) has generally a
better performance the retrained ones (table 4 row 1), suggest-
ing that the predictive performance of a model can correlate
with its confidence scoring performance.

Among the three improvement methods, we note that tem-
perature scaling gives the largest performance boost on all
three metrics (row 2). Surprisingly, the dropout method im-
proves only the AUPRs performance over the baseline (row 3).
On combinations of two methods, temperature scaling and en-
semble complement each other and obtain better performance.

5.4. Discussion

We briefly discuss different perspectives on our work.
Augmenting the feature set. The benchmarked methods

have the benefit of being general, as we leverage the posterior
token predictions, which are readily available in most, if not
all, existing end-to-end ASR toolkits. However, the feature set
could be extended with prior probabilities on the input audio
or the generated text, or with duration information extracted
from the attention weights.

Learning features. Following [?, ?], we have also exper-
imented with learning a confidence scoring network on top
of features extracted from the end-to-end model (specifically,
logits and pre-logits activations). However, our experiments
failed to show improvements over the presented results.

Dealing with deletions. To generate confidence scoring
groundtruth we align the reference text to the predicted text and
mark the correct words in the predicted text as positives and
the substitutions and insertions as negatives. This approach is
typical in the confidence scoring literature, but it misses the
errors made by deleting words. Several works have addressed
this problem [?, ?], and we leave it to future work to extend
our approach for this task.

6. CONCLUSIONS

This paper presented an approach for word-level confidence
scoring in end-to-end speech recognition systems. We carried
a thorough ablation study on features and their aggregation on
three well-known speech databases (LibriSpeech, TED-LIUM
and CommonVoice) and further evaluated improved methods,
which modify the token probabilities, and their combinations.
Our main observation is that temperature scaling improves
both features (max probability or entropy) and dropout or
ensemble methods. Lastly, using a pre-trained model improves



the replicability and allows comparison with other confidence
scoring models that will use the same ASR.
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