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Rezumat:  

Pentru un control mai bun al sistemelor de sinteză și pentru ca acestea să poată reda 
textul introdus într-o manieră cât mai apropiată de vocea naturală, este util ca datele de intrare 
(textul) să poată fi clasificat automat în funcție de stilul pe care acesta îl conține.  

În cadrul acestui raport vom prezenta două metode de detecție a stilului textului bazate pe 
metoda Latent Dirichlet Allocation (LDA), respectiv pe rețele neurale convoluționale multistrat. 
De asemenea pentru a îmbunătăți sistemul de detecție a stilului, vom prezenta și două module 
pentru restaurarea diacriticelor și determinarea părții de vorbire a cuvintelor. Cele două module 
sunt incluse în fluxul de procesare la intrarea sistemului de clasificare a textului. 
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1. Introducere 

Pentru un control mai bun al sistemelor de sinteză și pentru ca acestea să poată reda 
textul introdus într-o manieră cât mai apropiată de vocea naturală, este util ca datele de intrare 
(textul) să poată fi clasificat automat în funcție de stilul pe care acesta îl conține.  

În cadrul acestui raport vom prezenta două metode de detecție a stilului textului bazate 
pe metoda Latent Dirichlet Allocation (LDA), respectiv pe rețele neurale convoluționale 
multistrat. De asemenea pentru a îmbunătăți sistemul de detecție a stilului, vom prezenta și 
două module pentru restaurarea diacriticelor și determinarea părții de vorbire a cuvintelor. Cele 
două module sunt incluse în fluxul de procesare la intrarea sistemului de clasificare a textului. 

 

2. Clasificarea automată a textului folosind Latent Dirichlet Allocation 

În prima etapă a cercetărilor s-a dezvoltat o metodă de clasificare automată a stilului de 
vorbire din text bazată pe tehnici tradiționale de prelucrare a limbajului, în speță metoda LDA 
(Latent Dirichlet Allocation) folosită deja cu succes în sisteme de identificare automată a genului 
scrierii și mai ales în sisteme de clasificare automată a topicului discursului. Astfel, am plecat de 
la ipoteza că fiecare stil de exprimare scrisă poate fi modelat sub forma unui model echivalent 
de topic. Astfel, LDA ca model probabilist este capabil să modeleze în mod ierarhic fiecare stil 
de exprimare ca o combinație finită de probabilități de stiluri de exprimare, din cele disponibile 
în mod latent în setul de antrenare. Această modelare este potrivită, mai ales având în vedere 
spectrul larg de posibilități de exprimare în diferitele stiluri de vorbire. 

Corpusul de text folosit este obținut de la Coordonatorul proiectului (ICIA) și conține text 
adnotat pe diferite nivele de adnotare (lema, părțile de vorbire, etc) pentru 5 categorii de stiluri 
de exprimare: publicistic, politic, memorialistic, juridic, beletristic. 

  

Nume corpus Numărul documentelor Numărul de cuvinte 

Publicistic.txt 848 325191 

Politic.txt 8 374680 

Memorialistic.txt 12 315213 

JuridicAdministrativ.txt 153 337143 

Beletristic.txt 180 251927 
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Fig. 1. Fluxul de prelucrări 

Implementarea fluxului de prelucrări include: (1) eliminarea unor cuvinte de tipul “stop 
words” (cuvinte fără relevanță în clasificarea stilului de exprimare, de exemplu ‚cu’, ‘de’, ‘pe’, 
etc., preluate dintr-o listă generată de utilizator și customizabilă pentru a experimenta efectul 
eliminării unor cuvinte specifice), (2) lematizare – reținerea rădăcinii cuvintelor, cu scopul de a 
limita numărul total de cuvinte, în condițiile în care semantica nu este afectată, (3) segmentare 
text la nivel de propoziție, (4) eliminare caractere speciale, (5) creare de n-grame (eg. director-
general), (6) creare dicționar – etapa are rolul de a converti textul în codificare numerică, (6) 
creare modele LDA, (7) alegerea modelelor folosind ca și criterii de selecție perplexitatea și 
scorul de coerentă, (8) reprezentare vizuală a rezultatelor. 

Rezultatele sunt vizibile sub formă grafică, sub forma probabilităților de clasificare a unui text 
necunoscut către unul dintre stilurile din corpusul de antrenare (mai jos grafic rezultat din 4 
stiluri), precum și a scorului de coerență ale modelelor (ca măsură a gradului de separabilitate 
ale modelelor). 

 

Fig. 2. Grafice pentru gradul de separabilitate a celor 4 modele și cuvintele definitorii 

3. Clasificarea automată a textului folosind rețele convoluționale multistrat 

Odată dezvoltarea tehnologiilor de calcul și a capabilităților sistemelor bazate pe 
procesoare grafice, algoritmii ce utilizează rețele neuronale multistrat au prezentat un salt în 
majoritatea domeniilor în care aceștia au fost aplicați: procesarea limbajului natural, sisteme de 
procesare a vocii, viziune computerizată, etc. Astfel că, utilizarea lor în clasificarea stilului 
funcțional al unui text merită analizată.  
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În ceea ce privește clasificarea textului folosind rețele neuronale multistrat, există o serie 
de studii recente privind, în special, aplicarea rețelelor convoluționale uni-dimensionale pentru a 
rezolva această problemă.  Dintre acestea, cele mai des utilizate arhitecturi sunt cele de tip 
sequence-to-sequence (Gehrig et al., 2017). Acest tip de arhitectură permite utilizarea 
secvențelor de dimensiuni diferite atât în cadrul datelor de intrare ale rețelei, cât și la cele de 
ieșire. Pentru clasificarea textului cu ajutorul rețelelor convoluționale (Kim, 2014) folosește 
reprezentări vectoriale ale cuvintelor învățate dintr-un alt set de date, combinate cu o rețea 
neuronală cu arhitectură relativ simplă și obține rezultate ce depășeau alte studii de la 
momentul respectiv. (Lee et Dernoncourt, 2016) evaluează utilizarea rețelelor convoluționale și 
recurente pentru clasificarea textului și includ suplimentar informații despre secvențialitatea 
textului. Aceasta înseamnă că pentru textul curent, se va lua în considerare și textul clasificat 
anterior, dând o oarecare secvențialitate procesului de clasificare. O arhitectură bazată pe 
rețele convoluționale, puțin mai complexă este descrisă în (Wang et al., 2017). Aceasta include 
și un set de descriptori impliciți și expliciți ai textului de intrare prin conceptualizarea unor 
termeni utilizând o taxonomie derivată dintr-un corpus extins de date. Descriptorii astfel obținuți 
sunt comparați o reprezentare vectorială des utilizată denumită GloVE (Pennington et al., 
2014). Pe baza acestor descriptori, rețeaua reușește să clasifice texte de dimensiuni reduse cu 
o acuratețe de până la 93%.   

3.1. Descrierea metodei 

Pornind de la rezultatele studiilor anterioare, am dorit să aplicăm arhitecturi de rețele 
convoluționale asupra textelor în limba română. Un prim pas al acestui experiment se referă la 
preprocesarea textului de intrare, prin: 

● segmentare la nivel de cuvânt; 
● eliminarea semnelor de punctuație; 
● filtrarea simbolurilor alfabetice; 
● conversia la litere mici; 
● vectorizarea cuvintelor prin atribuirea unui index de valoare întreagă; 
● completarea cu valori de zero a frazelor de lungime mai mică decât cea prestabilită.  

 

Fig. 2. Arhitectura rețelei convoluționale utilizată pentru clasificarea textului. 
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Textul astfel procesat a fost apoi trecut printr-o rețea neuronală. Arhitectura rețelei12 este 
inspirată din (Kim, 2014), se bazează pe straturi de tip convoluțional și este prezentată în Figura 
1. Rețeaua include un prim strat de reprezentare vectorială (en. embedding), urmat de un strat 
de tip dropout (eliminare a unui procent de neuroni), un strat de tip convoluțional cu filtre de 
dimensiune 3, 4 sau 5 cu activare ReLU și pas 1. Ieșirea stratului convoluțional este procesată 
de un strat de tip max pooling, un strat complet conectat și unul de tip dropout cu activare 
ReLU. Clasificarea finală este dată de un strat complet conectat de dimensiune 5 
(corespunzător numărului de stiluri) și funcție de activare de tip softmax.  

 

3.2. Rezultate 

Metoda descrisă anterior a fost aplicată asupra unui set de date text extrase din corpusul 
Corola al Institutului de Inteligență Artificială al Academiei Română din București (Mititelu et al., 
2018). Setul de date conține text în stilurile: beletristic, științific, publicistic, memorialistic și 
juridic. Pentru fiecare subset am avut la dispoziție aproximativ 1 milion de tokeni (cuvinte), 
organizate în 40,000 de fraze. Media numărului de cuvinte dintr-o frază este de 20.   

Au fost evaluate mai multe scenarii pentru această rețea prin varierea cantității de date 
folosită pentru antrenarea rețelei, a dimensiunii stratului convoluțional și a numărului de epoci 
de antrenare. Pentru fiecare dintre aceste combinații s-au reținut din datele de antrenare 20% 
pentru testare și 10% pentru validare. Rezultatele metodei sunt prezentate în Tabelul 1.  

Codul ce permite rularea modelului cel mai bun este disponibil la adresa: 
https://github.com/speech-utcluj/romanian-text-classification-cnn. 

 

Tabel 1.. Rezultatele metodei de clasificare a textului folosind rețele neuronale convoluționale 

Nr. 
Număr propoziții 

antrenare 
Dimensiune 

conv. 
Număr 
epoci 

Acuratețe 

1 

5*3000 

512 
25 93.45% 

2. 50 93.37% 

3. 
1024 

25 92.77% 

4 50 93.46% 

5. 

5*1000 

512 
25 91.83% 

6. 50 91.81% 

7. 
1024 

25 91.37% 

8. 50 91.63% 

9. 

5*8000 

512 
25 92.69% 

10. 50 92.41% 

11. 
1024 

25 92.72% 

12. 50 92.28% 

13. 
5*38000 

512 25 90.10% 

14. 1024 25 90.44% 

 

Se poate observa că folosind această arhitectură, algoritmul este capabil să clasifice 
datele cu o acuratețe relativ mare și poate fi astfel folosit în pașii următori ai sintezei text-
vorbire. Chiar și cu date puține (1000 de propoziții/stil) rezultatele algoritmului sunt de 
aproximativ 91%. Creșterea numărului de epoci nu influențează rezultatele, iar rezultale folosind 
numărul maxim de propoziții din fiecare stil ajung la o acuratețe de mai mare de 90%.  

În ceea ce privește dezvoltările ulterioare, ne dorim să analizăm posibilitatea reducerii 
dimensiunii textului de intrare la propoziții mai scurte și eventual atașarea în cadrul rețelei a 
unor informații de ordin lingvistic (de ex. parte de vorbire, parsare sintactică, etc.). 

                                                
1
 http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ 

2
 https://richliao.github.io/supervised/classification/2016/11/26/textclassifier-convolutional/ 

https://github.com/speech-utcluj/romanian-text-classification-cnn
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4. Restaurarea automată a diacriticelor  

Lipsa diacriticelor este predominantă în textele electronice datorită faptului că utilizatorii 
fie nu folosesc editoare de text adecvate, fie nu au abilități de editare electronică suficiente. Ca 
urmare, utilizarea datelor colectate din surse online este de cele mai multe ori obstrucționată de 
acest fapt. Dezvoltarea unui modul de restaurare a diacriticelor în vederea unei mai bune 
exploatări a numeroaselor resurse disponibile este astfel absolut necesară. În procesul de 
clasificare a stilului unui text, am introdus astfel un pas de preprocesare a textului ce include un 
sistem automat de restaurare de diacritice.   

O descriere completă a sistemului, experimentelor și rezultatelor privind restaurarea 
automată a diacriticelor a fost prezentată în cadrul conferinței 15th IEEE International 
Conference on Intelligent Computer Communication and Processing (ICCP 2019), septembrie, 
2019, Cluj-Napoca, Romania. Articolul este anexat la acest raport (Anexa 1).  

5. Detecția automată a părții de vorbire 

Pentru a putea clasifica textul în funcție de stilul conținut, este util în anumite cazuri să se 
realizeze o dezambiguare a înțelesului unui cuvânt. Această dezambiguare este realizată de 
cele mai multe ori folosind partea de vorbire a cuvântului. Astfel că, am derulat o serie de 
experimente privind utilizarea unor arhitecturi de rețele neuronale pentru a prezice această 
informație lingvistică.   

O descriere completă a metodei, a experimentelor și rezultatelor privind detecția 
automată a părții de vorbire la nivel de cuvânt a fost prezentată în cadrul conferinței 15th IEEE 
International Conference on Intelligent Computer Communication and Processing (ICCP 2019), 
septembrie, 2019, Cluj-Napoca, Romania. Articolul este anexat la acest raport (Anexa 2).  

6. Analiză comparativă a trăsăturilor utile în transcrierea fonetică 

Deși nu are implicații directe în evaluarea stilului unui text, transcrierea fonetică reprezintă 
un pas esențial în prelucrarea de voce și limbaj natural. Astfel că, în conformitate cu 
experimentele anterioare, am dorit să evaluăm modul în care tipul de reprezentare a textului și 
informația lingvistică suplimentară introdusă în datele de intrare ale sistemului de transcriere 
fonetică influențează performanțele acestuia.   

O descriere completă a experimentelor și rezultatelor privind detecția automată a părții de 
vorbire la nivel de cuvânt a fost prezentată în cadrul conferinței 10th IEEE International 
Conference on Speech Technology and Human-Computer Dialogue (SpeD), octombrie 2019, 
Timișoara, Romania. Articolul este anexat la acest raport (Anexa 3). 

7. Concluzii 

În acest raport am prezentat o serie de experimente și rezultate referitoare la metode 
automate de clasificare a textului în funcție de stilul funcțional al său, precum și metode de 
preprocesare ce pot îmbunătăți rezultatele acestor metode: restaurarea automată a diacriticelor, 
precum și detecția automată a părții de vorbire. În etapele următoare se va urmări utilizarea 
rezultatelor raportate pentru îmbunătățirea sistemului de sinteză în limba română, precum și 
expresivitatea acestuia.  
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Abstract—In this paper we address the issue of automatic
diacritics restoration (ADR) for Romanian using deep learning
strategies.

We compare 6 separate architectures with various mixtures
of recurrent and convolutional layers. The input consists in se-
quences of consecutive words stripped of their diacritic symbols.
The network’s task is to learn to restore the diacritics for the
entire sequence. No additional linguistic or semantic information
is used as input to the networks.

The best results were obtained with a CNN-based architecture
and achieved an accuracy of 97% at word level. At diacritic-level
the accuracy of the same architecture is 89%.

Index Terms—automatic diacritics restoration, deep neural
networks, LSTM, CNN, sequence-to-sequence, Romanian

I. INTRODUCTION

Automatic Diacritics Restoration (ADR) is the process of
restoring the diacritic symbols in orthographic texts. The
applications of this process are numerous and include: spelling
checkers, lexical disambiguation, part-of-speech tagging, nat-
ural language understanding, etc. The lack of diacritics is
predominant in electronic texts where the user does not
use adequate text editing software, or is not technologically
proficient so as to use the diacritic symbols specific to his or
her native/acquired language.

Most of the European languages contain different sets of
diacritic symbols in their alphabets, with the most numerous
being in French and Slovak. The set of diacritics used in
European languages based on the Latin alphabet are illustrated
in Table I.

Romanian uses 5 diacritic letters: ă, â, ı̂, ş and ţ. Although
not all words have alternative spellings with and without
diacritics, in some cases, a missing diacritic could completely
change a word’s meaning (e.g peste = over vs. peşte = fish),
while in other cases, the absence of the appropriate diacritic
in the word’s ending letter makes it impossible to discern
between the definite or indefinite form of a noun (mamă =
a mother vs. mama = the mother).

Tufiş et al. [1] reports that between 25% and 45% of the
Romanian words contain diacritics, while in a random French
text, only 15% of the words contain diacritic symbols [2]. The
diacritic percentage across the European languages is reported
in [3].

Motivated by the the relevance of diacritic restoration across
various text-based applications, in this work we address the
Romanian ADR problem using sequence-to-sequence deep

TABLE I
DIACRITICS IN EUROPEAN LANGUAGES WITH LATIN BASED ALPHABETS

Language Diacritics Language Diacritics
Albanian ç ë Italian á è é ı̀ ı́ ı̈ ò ó ù ú
Basque ñ ü Lower Sorbian c̀ c̆ ĕ ł ń ŕ ś s̆ ź z̆
Breton â ê ñ ú ö Maltese ċ ġ ż
Catalan à ç è é ı́ ı̈ ò ó ú ü Norwegian å æ ø
Czech á c̆ é ı́ n̄ ó r̄ s̄ ý z̄ Polish a̧ ȩ ć ł ń ó ’s ’z ż
Danish å æ ø Portuguese â ă ç ê ó ô ŭ ü
Dutch ë Romanian ă â ı̂ ş ţ
English none Sami á ı̈ ĉ d- ń ņ š t- ž
Estonian ä č ō ö ž Serbo-Croatian ć č d- š ž
Faroese á æ d- ó øú ý Slovak á ä č d’ é ĺ ñ ó ô ŕ š

t’ ú ý ž
Finnish ä å ö š ž Slovene č š ž
French á â æ ç é è ë ê ı̂ œ ù û ÿ Spanish á é ı́ ó ú ü ñ
Gaelic á é ı́ ó ú Swedish ä å ö
German ä ö ü ß Turkish ç ǧ ö ş ü
Hungarian á é ı́ ó ö ő ú ü ű Upper Sorbian ć č ě ł ń ó ř š ž
Icelandic á æ ∂ é ı́ ó ö ú ý Welsh ǎ ě ǐ ǒ ǔ w̌ y̌

learning architectures based on convolutional and recurrent
neural networks.

The paper is structured as follows: Section II is a brief
overview of the state-of-the-art methods used in ADR. Sec-
tion III outlines the sequence-to-sequence architectures, while
Section IV presents the dataset and the tested architectures.
The final results are illustrated in Section V. The conclusions
and future perspectives are summarized in Section VI.

II. RELATED WORK

With the increase in the use of electronic devices across
different social and cultural categories, the need for high-
quality ADR applications is more prevalent, and so is the
number of published scientific studies. Simard [2] employs
Hidden Markov Models trained at word level on French texts.
For the Vietnamese language, Nguyen et al. [4] combine
Adaboost and C4.5 decision tree classifiers with a letter-based
feature set in five different strategies: learning from letters,
learning from semi-syllables, learning from syllables, learning
from words, and learning from bi-grams.

A deep learning approach for diacritics restoration is pro-
posed by Náplava et. al. in [5] and uses Bidirectional Neural
Networks combined with a language model. The model was
tested for 23 languages, including among others Czech, Slovak
and Romanian.

For the Romanian language, in particular, the works of
Mihalcea et al. [3], [6] explore instance based learning at letter
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Fig. 1. Sequence-to-sequence flow

level, using the Tilburg memory and the C4.5 decision tree
classifier, scoring an overall F-measure of 98.30 %.

Tufiş et al. [1] propose a Part-Of-Speech tagger and the use
of two lexicons to solve the ambiguity problem in Romanian
ADR. An overall accuracy of 97.4 % is achieved at word level.

Ungureanu et. al [7] propose a word classification schema,
based on the occurrence of diacritics in each word (words
always written with diacritics, words with no diacritics at all
and words with different diacritical written pattern - words
which change their meaning as diacritics are missing, as shown
in Section I). Then these categories are distilled into two
dictionaries. During training and testing, the two lexicons are
used to improve the ADR results, obtaining an overall F-
measure of 99.34%.

In [8] Petrică presents a diacritics restoration system trained
on unreliable raw data sets. First, the correctly spelled sections
are identified and used as training data for the ADR. Second,
the trained ADR is applied to the remaining parts of the initial
text.

The previously described approaches use language models
and linguistic information extracted from the texts at different
levels. In this work, we propose a deep learning approach to
solve the ADR problem for Romanian using only character
sequences and without any expert linguistic knowledge.

III. SEQUENCE TO SEQUENCE LEARNING

The sequence-to-sequence (seq2seq) [9] architecture is de-
signed to handle input and output sequences with different
lengths. The most common applications for this architec-
ture include automatic machine translation, video captioning,
speech recognition and speech synthesis.

Broadly speaking, the seq2seq architecture is formed of two
parts: an encoder and a decoder, each of them being a separate
neural network. The encoder is responsible for understanding
the input and representing it in a lower dimensional space.
The output of the encoder will then be used to condition the
decoding network’s prediction. Figure 1 presents a seq2seq
model for the word ”masa” as input and ”masă” as output.
The tags <SS> and <SE> mark the start and the end of
the sequence. The most prevalent architectures behind the
encoders/decoders are the recurrent and convolutional neural
networks.

Fig. 2. LSTM memory cell [11]

A. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural
network in which the output of the current time step is
conditioned on the output of the previous time step. As a result,
RNNs are commonly used to model temporal sequences.
However, a major problem with vanilla RNNs is that they
cannot model sequences in which the temporal dependencies
are stretched across multiple time steps.

The solution for this problem is to use more advanced
network nodes, in which an internal state of the node can
memorize or forget data snippets which are of interest to the
current prediction. One such specialized node is the Long
Short Term Memory (LSTM) cell [10].

A LSTM cell (graphically depicted in Figure 2) contains
the following elements:

• forget gate ft - a neural network (NN) with sigmoid
activation

• input gate it - a NN with sigmoid activation
• output gate ot - a NN with sigmoid activation
• hidden state ht - a vector
• memory state ct - a vector
The input gate selects what new information to be stored

in the current cell at a time step t. The forget-gate expresses
the amount of information which will be discarded, while the
output-gate will provide the activation to the final output of
the LSTM block. The hidden state is calculated from the cell
state passed through an activation function and element-wise
multiplied with the output vector at the time step t.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNN), originally used in
image processing, are another type of deep networks largely
used for pattern recognition tasks.

A simple CNN architecture contains the following elements:
• a convolutional layer
• a non-linear activation layer
• a pooling (or sub sampling) layer
• a fully connected (softmax) output layer.
The convolutional layer defines a non-linear filter bank (or

kernel), which is shifted over the input features using a fixed
stride and generates a multi-dimensional feature map, which
is processed by a non-linear activation function. The pooling
layer reduces the representation of the convolutional layer’s



output, as well as decreases the memory requirements. In
general, the polling layer is placed between the convolutional
layers. The features with the highest values (maxpool) are
fed into a fully connected layer, whose activations are finally
passed into a softmax layer. The output of the softmax
function represents the estimated probability distribution over
the output labels. In some cases, a normalization layer is
stacked on the pooling layer to normalize the data, with mean
0 and variance 1. The normalization step ensures the networks
stability.

The characteristics highlighted above make the seq2seq
learning a good candidate for the Romanian ADR problem.

IV. EXPERIMENTAL SETUP

A. Training Data

For training and testing our models, we selected a subset
of the CoRoLa text corpus [12]. The subset contains 51.043
sentences with 1 million tokens and 63.194 unique words. The
style of the text is belletristic. The corpus is not purposely
build for ADR tasks, but can be considered as a reliable source
of correctly typed text (i.e. containing the correct diacritics)
in Romanian as it was manually annotated at word-level
with several linguistic information. We subsequently split the
dataset into disjoint training (80%) and testing (20%) sets,
each of them being individually shuffled.

A few pre-processing steps were performed and include the
following operations:

• convert text to lowercase
• strip the digits and punctuation
• strip the diacritics
• parse the text in trigrams
• create pairs of input-target sequences
• append a start-character (”\t”) and an end-character

(”\n”) to the target trigram
An example of a pre-processed sentence is shown in

Table II. The obtained input-output pairs are illustrated in
Table III.

TABLE II
PRE-PROCESSING EXAMPLE

Initial sentence ”Mă uitasem la ceas, era ı̂ncă ora 22.00.”
Pre-processed sentence ”ma uitasem la ceas era inca ora”

TABLE III
INPUT-OUTPUT TRIGRAMS FOR A CHOSEN SENTENCE

Input sequence Target sequence
ma uitasem la \t mă uitasem la \n
uitasem la ceas \t uitasem la ceas \n
la ceas era \t la ceas era \n
ceas era inca \t ceas era ı̂ncă \n
era inca ora \t era ı̂ncă ora \n

When an unknown input sequence is decoded, we begin
with the starting character and use the decoder to predict the
next character until the ending character is generated. The

Encoder_Input: InputLayer

Encoder_Layer: LSTM Decoder_Input: InputLayer

Decoder_Layer: LSTM

Decoder_Output: Dense

Fig. 3. seq2seq-LSTM model architecture

trigrams were chosen to represent the context of the current
sequence.

After the pre-processing steps, the train set ended-up con-
taining 616.691 tokens, while the test set contained 162.791
tokens.

B. System architectures

For our initial tests we selected two ADR systems [5], [13]
previously applied for Romanian. The systems were retrained
using our dataset, but preserving the original parameter values.

Inspired by the architectures described in these two systems,
we analyzed four other architectures with various combina-
tions of recurrent and convolutional layers. For implemen-
tation, we relied on Keras1 with TensorFlow2 as backend.
The networks’ hyperparameters were tuned using a small
development set.

All 6 architectures are described in the following subsec-
tions with the previously published works marked with an
asterisk (*). All systems were trained over 50 epochs.

1) One layer LSTMs (ID: seq2seq LSTM): In the RNN
sequence-to-sequence architecture the encoder and decoder
both included one LSTM layer. A latent dimension of 128 for
both layers and a batch size of 512 were chosen. The input
to the encoder and decoder was one-hot encoding at character
level. The input of the decoder was also conditioned on the
hidden state of the encoder. The output of the decoder LSTM
layer is sent to a softmax dense layer with a dimension equal to
the length of the one-hot encoded target character set. Figure
3 illustrates the architecture design of the RNN architecture.

2) Stacked LSTMs (seq2seq stacked * LSTM): In order to
improve the results, one additional LSTM layer was added to
the encoder. The newly obtained encoder was tested in two dif-
ferent contexts. First, we used a 1 LSTM layer for the decoder
(ID: seq2seq stacked 1 LSTM). Then, another LSTM layer
was stacked in the decoder (ID: seq2seq stacked 2 LSTM).

1https://keras.io/
2https://www.tensorflow.org/



The model seq2seq stacked 1 LSTM was trained with
a 256 latent dimension and 128 batch size. For model
seq2seq stacked 2 LSTM a batch size of 512 and a latent
dimension of 128 were used.

encoder_input: InputLayer

encoder_lstm1: LSTM

encoder_lstm2: LSTM

lstm_2: LSTM

input_2: InputLayer

dense_2: Dense

Fig. 4. seq2seq stacked 1 LSTM model architecture

3) Convolutional Sequence-to-Sequence (ID:
seq2seq CNN): In our experiments, the CNN architecture
contains 3 convolutional layers with 128 feature maps and
a kernel of size 3, for both the encoder and the decoder
networks. An attention architecture with a softmax activation
follows the 3-layered convolutional decoder networks. The
output is processed by another 2 convolutional layered
architecture, with a softmax dense output. Figure 5 illustrates
the model structure. The model is trained with a batch size
of 1024 and a 128 latent dimension.

4) *RNN and CNN hybrid model (ID: seq2seq hybrid):
The RNN and CNN hybrid model [13] uses two paths -
character level and word level. For the character path, an
embedding layer feeds the input to 3 stacked CNN layers. The
word path goes through embedding and a bidirectional LSTM
(biLSTM). The two paths are merged by projecting words to
characters based on a projection matrix which is received as an
additional input. Hence, the character and word embeddings
are jointly learned. These embeddings are fed to a stack of
3 convolutional layers. The output is predicted using a time
distributed dense layer. We trained the network with a batch
size of 32. The system architecture is illustrated in Figure 6.

5) *RNN with language model: In [5] a combination of
character-level recurrent neural network based model and a
language model are applied to automatic diacritics restoration.3

The core model uses a bidirectional LSTM which deals with
previous and next letter contexts in the sequence.

The bidirectional RNN contains 2 stacked layers with
residual connections, composed of 300 LSTM units. A batch

3https://github.com/arahusky/diacritics restoration
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concatenate_context_to_decoder_CNNs: Concatenate
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decoder_outputs: Conv1D

decoder_dense: Dense

Fig. 5. seq2seq-CNN model architecture

size of 200 was chosen. The model language is based on
left-to-right beam search. At each time step, the output of
the biLSTM layers is reduced by a fully connected layer
to v-dimensional vectors, where v is the size of the output
vocabulary. A non-linear ReLU activation function is applied
to the reduced vectors. The final output layer uses a softmax
activation.

V. EVALUATION

All 6 system architectures were evaluated using the classifi-
cation accuracy metric, which is defined as the ratio between
the correct predictions and the total number of samples.

We computed the accuracy at three different levels: trigram,
word and character level. At trigram and word-level the ac-
curacy reflects the number of correct predictions made by the
system overall. At character-level, we computed the accuracy
only for the characters which may be written with diacritic
symbols (a, i, s, t). Accuracy results for all the systems are
presented in Table IV.



TABLE IV
NETWORK PARAMETERS AND ACCURACY RESULTS

Architecture ID Latent dimension Batch size Accuracy
3-gram level Word level Character level

seq2seq LSTM 128 512 75.50% 89.98% 71.61%
seq2seq stacked 1 LSTM 256 128 79% 93 % 78%
seq2seq stacked 2 LSTM 128 512 84% 94 % 82%
seq2seq CNN 128 1024 91% 97 % 89%
seq2seq hybrid [13] N/A 32 77% 92% 84%
seq2seq LSTM Language model [5] 300 200 84 % 96 % 90%

input_char: InputLayer

embedding_1: Embedding input_word: InputLayer

Embed_word: Embeddingchar_pipe_1: Conv1D

word-char-input: Concatenate

input_map: InputLayer

transpose_map: Lambda word_pipe(lstm_1): Bidirectional(LSTM)char_pipe_2: Conv1D

project_words_chars: Lambdachar_pipe_3: Conv1D

main_pipe_1: Conv1D

main_pipe_2: Conv1D

main_pipe_3: Conv1D

time_distributed_1(dense_1): TimeDistributed(Dense)

Fig. 6. seq2seq-hybrid model architecture

A separate set of results is shown in Table V, where the
4 ambiguous letter sets in Romanian (a-ă-â, i-ı̂, s-ş, t-ţ) are
analyzed individually.

The highest accuracy in terms of trigrams and words, was
achieved for the convolutional network seq2seq CNN, while
the single-layer LSTM system seq2seq LSTM had the lowest
accuracy. One explanation can be found in the recurrence of

TABLE V
ACCURACY RESULTS FOR INDIVIDUAL AMBIGUOUS PAIRS OF THE BEST

PERFORMING SYSTEM

Architecture ID Accuracy
a-ă-â i-ı̂ s-ş t-ţ

seq2seq CNN 93.51 % 99.44 % 98.39 % 97.94 %

the LSTMs, which may require larger data context, as opposed
to the CNN, which uses an attention layer and sliding windows
(kernels) to simulate the recurrence.

However, at character-level, the system described in [5]
outperforms all other systems. The justification for this result
can be the use in [5] of a language model together with the
RNN, while our systems restore the diacritics without any
additional linguistic information.

VI. CONCLUSIONS AND FUTURE WORK

In this work we compared 6 neural networks architectures
for the task of automatic diacritics restoration applied to
Romanian. All the models are trained using only parallel input-
output pairs of texts with and without diacritics. As input
to the sequence-to-sequence architectures we used character-
level one-hot encodings. However, it is common practice in
NLP to encode the words or characters using multidimensional
embeddings obtained from large amounts of text data. These
embeddings would allow the network to have an initial esti-
mate of the characters’ function in a language. So as future
work, we intend to substitute the one-hot encoding with letter
or word embeddings, and also to include additional linguistic
or semantic information.

In our experiments we split the data in trigrams, both for
training and for testing. Each network receives a diacritic-
stripped trigram and predicts the entire corresponding se-
quence with diacritics. We intend to experiment with other
N-gram, allowing the network to capture more context. One
other means of improving the results is to predict the diacritics
only for the sequence-ending word, considering all previous
words to be correctly typed.

In addition, we are planning to investigate other types of
fully convolutional neural networks, based on dilated con-
volutions combined with attention mechanisms, architectures
largely used in Machine Translation and Speech Synthesis
fields, but unexplored in the ADR domain.
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Abstract—In this paper we present LSTM based neural net-
work architectures for determining the part of speech (POS)
tags for Romanian words. LSTM networks combined with fully-
connected output layers are used for predicting the root POS,
and sequence-to-sequence models composed of LSTM encoders
and decoders are evaluated for predicting the extended MSD and
CTAG tags. The highest accuracy achieved for the root POS is
99.18% and for the extended tags is 98.25%. This method proves
to be efficient for the proposed task and has the advantage of
being language independent, as no expert linguistic knowledge is
used in the input features.

Index Terms—POS tagging, recurrent neural networks, LSTM,
sequence-to-sequence, Romanian, MSD, CTAG

I. INTRODUCTION

Part of speech (POS) tagging is one of the key tasks of
natural language processing (NLP). It refers to the identifi-
cation of the part of speech of a given word and optionally,
additional grammatical properties inherent to a particular POS.
Along with other components of NLP, such as lemmatization,
stemming, syllabification, word or sentence boundary detec-
tion and many others it aims to help computers understand
and process natural language.

The difficulty of the task lays in the fact that the same
orthographic form of a word can have a different meaning
depending on the context (i.e. homographs). Another problem
is that the declination and inflections of the words are not
regular, especially in morphological rich languages, such as
the case of Romanian. As a result, to define the correct POS
of a word aside from its spelling, we also need to take into
account the semantic links between words.

The task of POS tagging can have several annotation levels.
The most basic one refers to determining the root POS
(noun, verb, adjective, pronoun, determiner, article, adverb,
adposition, conjunction, numeral, interjections, residual, ab-
breviation, part particle) and can usually be obtained from the
dictionary entry of the word’s lemma. The most complex tagset
is the Morpho-Syntactic Descriptions (MSD) set, which adds
several grammatical properties depending on the root POS [1].
Compared to MSD, the C-tagset introduced by [2] is a reduced
size tagset that adds a maximum of 3 additional properties to
the root POS. For ease of expression we will refer to the
process of determining the root or an extended tag of a word
as POS-tagging in general and denote the specific tagset where
it is necessary.

Several single or multilingual text processing tools have
been developed to perform the task of POS tagging with
the scope of being incorporated into applications such as
speech recognition, speech synthesis, machine translation or
textual information extraction. The most common approaches
among the previous studies rely on probabilistic and rule-
based methods such as Hidden Markov Models, Maximum En-
tropy Classifiers, Bayesian Networks and Conditional Random
Fields [3]. According to [3] these methods do not perform well
on languages that use a lot of inflection, such as Romanian.
In addition, rule based methods are language dependent and
might require hand-crafted rules. Tools for building these rules
have also been developed [4].

With the increasing popularity of machine learning, deep
neural networks have also been successfully applied to NLP
tasks. Neural network based algorithms have been used and
compared to probabilistic POS-taggers since the 1990’s [5] for
the English language. To the best of our knowledge the first
accuracy results for POS-tagging with neural networks applied
to the Romanian language were reported in [3].

Studies concerning the Romanian language are also nu-
merous with a relatively high reported accuracy. Tufiş et al.
[2] achieved an accuracy of 98.39% using a tiered tagging
with C-tagset for the language model, extended with a post-
processor using probabilistic methods to reconstruct the MSD
tag. [4] and [6] present hybrid methods combining statistical
models with a rule based system that classifies tagging errors
and reduces the need for manual rule construction. The best
accuracy obtained by Simionescu is 97.03%. [3] reports an
accuracy of 98.17% for MSD-tagging by implementing feed-
forward neural networks with genetic algorithms used for
designing the network topology. The BAILE multilanguage
system [8] obtains an accuracy of 95.03% for POS-tagging for
the Romanian language. Similar accuracy, 96.12% is achieved
by [7] using a Naive Bayes model with a word database. All

TABLE I
POS-TAGGING ACCURACY RESULTS FOR ROMANIAN REPORTED IN THE

LITERATURE

Authors Method Accuracy Tagset
Tufis & Mason [2] Probabilistic 98.39% MSD
Boros & Dumitrescu [3] Deep Neural Networks 98.19% MSD
Simionescu [6] Probabilistic & Rule-based 97.03% MSD
Teodorescu et al. [7] Probabilistic 96.12% Root POS
Frunza et al. [8] Machine Learning 95.30% Root POS



Fig. 1. LSTM memory cell [13]

the above results are summarized in Table I.
Starting from this overview, in this work we investigate

the use of a recurrent neural network model with Long
Short Term Memory (LSTM) layers for POS-tagging taking
into consideration previous studies evaluated on several other
languages (not including Romanian) [9], [10]. They conclude
that LSTM networks work well for determining the POS-
tag, not only with limited, but also with extended tagsets.
We compare the results obtained with LSTM networks to
a sequence-to-sequence model composed of LSTM encoders
and decoders used for determining extended tags.

The paper is structured as follows: the proposed methods
for POS-tagging are described in Section II, and the details
of training data and implementation are elaborated in Section
III. We discuss the results in Section IV. The conclusions and
possible future work are summarized in Section V.

II. METHOD OVERVIEW

As neural network based learning methods are now widely
used in many areas of NLP and speech processing applica-
tions, in this article we focus on experimenting with different
neural network architectures to determine the root POS or the
extended tag.

Recurrent neural networks (RNN) are highly efficient in
sequential data modelling. Their main advantage is that their
output combines the current input with the output of the
previous time step. Therefore it can extend its understanding of
the data to the temporal connections between sequential inputs.
However, vanilla RNNs cannot expand across long temporal
sequences [11]. To overcome this disadvantage, Long Short
Term Memory (LSTM) structures can be used [12]. These
structures are based on recurrent nodes, but are extended with
a memory cell which can model long-term dependencies in
the input data. The memory cell contains a set of gates which
decides what previous information needs to be saved in the cell
state (memory), what needs to be discarded and how much the
current input and stored memory will influence the output of
the cell. The memory cell components are depicted in Figure 1.

The behaviour of the cell gates are described by Equa-
tions 1, 2, and 3:

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ(wf [ht−1, xt] + bf ) (2)

ot = σ(wo[ht−1, xt] + bo) (3)

where σ is the sigmoid function, and i, f , o are the input,
forget, output gates, respectively, at time step t. wx are the
weights of the appropriate gate(x), xt is the input at time step
t and bx is the bias for the respective gate(x). The states of the
cell at the current time step t are stored in cell vector ct and
hidden vector ht. These state vectors have the same dimension
as the cell gate vectors. Equations 4 and 5 describe the state
vectors:

ct = ftCt−1 + it tanh (wc[ht−1, xt] + bc) (4)

ht = ot tanh ct (5)

where ct – the cell state is computed based on the previous
state with a sigmoid activation function computed in training
time and with the candidate for the current state.

The hidden state is calculated from the cell state passed
through an activation function and element-wise multiplied
with the output vector at time step t.

In our experiments to predict the root POS-tag (containing
a single character) we added to the LSTM layers a fully-
connected (dense) layer. The unit size of this layer is set to
the number of possible POS-tags. The behaviour of this layer
is described in Equation 6:

ox = (Wx) + b (6)

where the output is calculated based on the inputs (x), weight
(W ) and bias (b).

To determine the MSD tag of the word, a sequence-to-
sequence (seq2seq) [14] learning method was applied. RNN
networks can be used when the input and output vectors can be
encoded with fixed-dimension vectors and are not appropriate
for defining the variable length MSD tag of a word. The
seq2seq model is composed of an encoder and a decoder.
The encoder and decoder are both neural networks that are
frequently implemented with LSTM cells.

The encoder is responsible for interpreting the input data,
one time step at a time, and converting it into a fixed dimension
vector representation. The decoder uses the hidden or output
state of the encoder to condition its own output. In general,
the decoder is trained with one time step-delayed sequences.
This means that it learns to predict the next character or word
in the output sequence. Figure 2 presents the seq2seq model
for the word ”acasă” as input and ”Rg” as output sequence,
where <SS> marks the start and <SE> the end of sequence.

III. EVALUATION

A. Tagsets

Different tagsets can be used for POS-tagging to indicate the
POS and/or additional grammatical categories. The tagset is
language dependent and contains all possible parts of speech in
the respective language. For Romanian, we used the following
tagsets: root tagset (ID:RPOS), MSD-tagset (ID:MSD) and
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a c a s ă <SS>

R g <SE>

Fig. 2. Sequence-to-sequence model input and output sequence example

TABLE II
NUMBER OF TAGS PER TAGSET

Tagset No. of tags used
Basic 13
MSD 334
CTAG 89

TABLE III
MSD TAG EXAMPLES FOR A VERB AND A NOUN

Vmp3pf Ncmsrn
V verb N noun
m main c common
p participle m masculin
3 third person s singular
p plural r nominative
f feminine n not definite

C-tagset (ID:CTAG). The number of different tags used from
each tagset is shown in Table II.

The most basic tagset contains only the part of speech of
the word’s lemma as extracted from a linguistic dictionary (e.g
’V’ for verb, ’N’ for noun, ’A’ for adjective etc.). We refer to
this as the root POS tag.

The MSD (Morpho-Syntactic Descriptions) is an extended
tagset containing the codes defined by the MULTEXT-EAST
project [1]. The number of MSD tags varies per dataset and
according to [15] a number of 615 tags were described for
the Romanian word-form lexicon. The MSD is a hierarchical
POS representation, where the first upper case letter represents
the root POS followed by the lexical attributes of the POS.
Examples for a verb and noun MSD tag are shown in Table III.

A different tagset, called C-tagset (CTAG) was introduced
in [2]. CTAG is a reduced version of the MSD and can
be mapped to it directly. For example ’NSRN’ stands for a
common noun, that is singular, direct and indefinite. We used
this tagset when training on large amounts of text where the
tag is defined based on the context of the word.

B. Datasets

Three different datasets were used for the training part. Most
of the experiments were run on the morphological dictionary
created by Simionescu [4] with the help of DexOnline database

TABLE IV
NUMBER OF TRAINING AND TEST SAMPLES PER DATASET

Dataset Total samples No. of training samples No. of test samples
WPT 1,715,881 897,328 224,331
DEX 1,994,412 936,611 234,152

CoRoLa 3,075,165 2,460,132 615,033

and Wikipedia1 proper nouns collection (ID:WPT).2 This
dataset consists of 1,715,881 words associated with one or
more MSD tags. For the POS-tagging training we used the
first character of the MSD tag. If multiple tags were available
for the same orthographic form, only the first entry was used.
For evaluation purposes the test data was validated against all
possible tags assigned to the word sample.

The second dataset we used is the Romanian Explicative
Dictionary database (ID:DEX)3 that contains 1,994,412 words,
each associated with one or more POS-tags and a word
frequency. The words with 0 frequency were removed from
the training, resulting in a set of 1,158,197 samples.

The third dataset consists of 125,316 sentences selected
from the CoRoLa [16] corpus (ID:CoRoLa).4 The sentences
contain 3,075,165 words with a number of 175,946 unique
words. The CoRoLa corpus provides linguistic attributes for all
words including the MSD and CTAG annotations and contains
texts of different styles such as juridical or scientific. The word
samples were collected from these texts randomly.

The first two datasets contain individual words with single
or multiple POS or MSD information attached. The third
dataset provides context-related information as the tags are
assigned to words of the sentences. From each dataset 20%
of the samples was randomly selected for testing and the
remaining 80% used for training. The number of train and
test samples is summarized in Table IV.

C. Data input format

The input data was coded either with one-hot-encoding
(ID:OHE) or letter embedding (ID:LE). In the former encod-
ing the words are represented by a two-dimensional binary
matrix. The size of the matrix depends on the number of
input characters and the maximum length of the input words.
The letter embedding uses a dense representation of each
character that contains information about the context of the
selected character which is important for POS-tagging [17].
The Gensim5 library was used to create a letter embedding of
order 30 based on the Romanian Wikipedia pages’ database
dump. The order was selected to be close to the number of
characters in the Romanian alphabet.

Word embeddings were not considered in our study, as the
focus was to predict the POS tags using only the orthographic
form of the words, independent of their linguistic context.

1https://ro.wikipedia.org/
2http://nlptools.infoiasi.ro/WebPosTagger
3https://dexonline.ro/
4http://corola.racai.ro/
5https://radimrehurek.com/gensim/
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Fig. 3. LSTM with dense layers model

D. System architectures

For the implementation we used the Keras6 deep learning
library with TensorFlow7 backend. We grouped our network
architectures into the following categories:

1) LSTM with fully-connected (dense) layers: The input
data was one-hot encoded or used letter embeddings and
provided to a first LSTM layer. The latent dimension of the
LSTM layer varied from 64 to 1024. On top of the LSTM layer
two dense layers were stacked. The second dense layer serves
as the output layer, having the size equal to the number of
possible POS-tags. The architecture of this network is shown
in Figure 3.

2) Sequence-to-Sequence Model: A character-level
sequence-to-sequence (seq2seq) model is used for the MSD
tagging. The input sequences are the words and the MSD tags
of the target sequences. The encoder LSTM layer converts
the input sequence into state vectors. The decoder LSTM
layer uses the initial state vectors of the encoder and turns the
target sequences into the same sequence offset by one time
step. Teacher enforcing is used to generate the next character,
as the decoder generates the target[t+ 1, ...] sequence given
the sequence target[..., t]. We add a starting and ending
character to each target sequence. An example of an input
and target sequence composed of 4 words is shown below:

Input sequence: ’Absolvent al Facultăţii de’
Target sequence: ’#NSN TS NSOY S@’

When an unknown input sequence is decoded, we begin
with the starting character and use the decoder to predict
the next character until the end of sequence character or a
maximum sequence length is reached.

The sequence-to-sequence model was used to determine
the CTAGs within the context of sentences. The encoder and

6https://keras.io/
7https://www.tensorflow.org/

Encoder_Input: InputLayer

Encoder_Layer: LSTM Decoder_Input: InputLayer

Decoder_Layer: LSTM

Decoder_Output: Dense

Fig. 4. LSTM sequence-to-sequence model

decoder models were trained with a sliding window over the
words. The networks we trained used 3 to 5 words and were
shifted to the right by one word for each sample. The best
accuracy for the tags was achieved when the training samples
were composed of 3 words. The architecture of this network
is shown in Figure 4.

IV. RESULTS AND DISCUSSIONS

Each network was evaluated on 20% of the initial dataset
held out of the training data. The efficiency of the training
method was measured by accuracy: dividing of the number of
correct predictions by the total number of predictions. When
calculating the accuracy for the MSD tags we only considered
as correct outputs the predicted sequences that fully matched
the target MSD-tag. The parameters and accuracy results are
shown in Table V. The asterisk (*) marks the systems where
we considered all possible tags associated with the words as
correct answers, and not only the first entry tag.

The test data was randomly selected, and both training and
test samples were shuffled before training. Based on initial
tests we choose to set the batch sizes to 256, 512 or 1024.
The best results were obtained with a batch size of 512. The
latent dimension of the LSTM cells was evaluated with 64,
128, 256, 512 respectively 1024, the best accuracy numbers
were achieved with size 256.

The best accuracy for the root POS-tagging (when predict-
ing only a single character) was 99.18% (System ID 1). This
outperforms all the systems presented in Table I which predict
the root POS. When the same network was validated against
only the most frequent POS and not all the possible POS tags
available in the dataset, the accuracy was 94.85% (System
ID 2). The accuracy breakdown per root POS is shown in
Table VI. The POS types that did not end up in the test set
due to their low count and the random selection, are marked
with a not applicable (N/A) accuracy. The loss was calculated



TABLE V
NETWORK PARAMETERS AND ACCURACY RESULTS

System ID Dataset Tag Network type Character encoding Latent dimension Batch size Epochs Accuracy
1 WPT RPOS LSTM + Dense (*) OHE 256 512 50 99.18%
2 WPT RPOS LSTM + Dense OHE 256 512 50 94.85%
3 WPT RPOS LSTM + Dense LE 256 256 25 54.80%
4 WPT RPOS seq2seq LSTM LE 256 256 25 94.99%
5 WPT RPOS seq2seq + Embedding layer OHE 256 256 20 93.88%
6 WPT MSD seq2seq LSTM (*) OHE 512 1024 50 98.25%
7 WPT MSD seq2seq LSTM OHE 512 1024 50 75.28%
8 WPT MSD seq2seq + Embedding layer OHE 256 512 50 76.62%
9 DEX RPOS LSTM + Dense OHE 256 512 50 94%
10 CoRoLa CTAG seq2seq LSTM OHE 256 512 100 97.15%
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Fig. 5. The model accuracy and loss during training for System ID 1

TABLE VI
ACCURACY SUMMARY PER POS FOR SYSTEM ID 1

POS No. of train No. of test Accuracy
samples samples

Noun 471470 118133 99.86%
Adjective 232731 58457 99.86%
Verb 191489 47320 99.76%
Adverb 783 212 98.29%
Numeral 214 65 98.21%
Pronoun 220 48 97.76%
Determiner 161 37 98.99%
Interjections 156 37 96.37%
Abbreviation 58 0 N/A
Adposition 39 9 97.92%
Conjunction 12 0 N/A
Article 6 0 N/A
Part Particle 2 0 N/A

with categorical cross entropy method. The training accuracy
and loss values of this model are shown in Figure 5.

The sequence-to-sequence model achieved an accuracy of
98.25% for the MSD tags (System ID 6). Compared to the
POS prediction where the model only needed to predict one
of the 13 root POS tags, the MSD model needs to predict 334
possible tags. Our results are comparable to the ones reported
in [2]. However, the evaluation datasets are different, and [2]
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Fig. 6. The model accuracy and loss during training for System ID 6

also uses context information.
The sequence-to-sequence model on CTAGs obtained an

accuracy of 97.15%. The loss and accuracy values during
model training are shown on Figure 6. This model uses context
related information which improves the performance and could
be extended to hierarchically predict MSD tags.

The models were tested with letter embeddings as input
and also with the input layer replaced by an embedding layer.
Changing the input did not result in higher accuracy. This
could be explained by the fact that in the case of LE the
positional information of a letter does not change the POS. In
the case of the embedding layer the available data might not
be sufficient for a good representation learning of the input.

V. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated two different types of neural
network architectures for POS-tagging, applied on the Roma-
nian language. LSTM networks with fully-connected layers
performed well on predicting the root POS, while sequence-to-
sequence models achieved high accuracy for defining extended
tags, such as the MSD and CTAGs. The addition of the letter
embeddings and using embedding layers instead of the one-
hot-encoding for representing the input data did not result in
higher accuracy.

Despite the very good results obtained by our network
architectures, there is still a need to explore other network ar-
chitectures, such as convolutional neural networks, especially



for the extended tagsets. Adding other linguistic information,
such as lemma or lexical stress could improve the accuracy of
the POS taggers, especially in the case of homographs.
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Abstract—This paper evaluates the use of sequence-to-sequence
learning models for the Romanian grapheme-to-phoneme conver-
sion. The strategies explore the use of different input feature en-
coding: one-hot letter encoding, additional embedding layer and
grapheme embeddings learned from a large corpus of Romanian
text. Additional lexical information, such as syllabification and
lexical stress is also taken into consideration for augmenting the
orthographic form of the word and providing more accurate
phonetic transcriptions.

The sequence-to-sequence models are also compared to a
baseline decision tree algorithm in terms of both phone- and
word-level accuracy. The best results are achieved by the model
which uses grapheme embeddings and all additional linguistic
information. Its accuracy is 97.90% at word-level, and 99.62%
at phone-level. However, only minor differences exist between the
tested systems.

Index Terms—phonetic transcription, Romanian, grapheme-to-
phoneme, G2P, LTS, LSTM, DNN, letter embeddings, grapheme
embeddings

I. INTRODUCTION

The latest trends in human-computer interaction using nat-
ural language or speech processing tend to limit the input
feature manipulation by the human expert in favor of a deep
learning architecture. This architecture can, at least in theory,
extract similar features on its own. For example, state-of-
the-art speech synthesis systems are now trained using only
pairs of text and audio with no segment alignments or text
processing [1], [2]. Machine translation systems can learn to
map sequences of texts in two separate languages, without the
need of an annotated correspondence between the words of
the sequences.

Even though the additional features are not required in
these particular tasks, they are still an essential part of many
other applications. For example, the lexical stress or pho-
netic transcription can discriminate between homographs in
semantic analysis. To develop algorithms which can extract
these features with high accuracy, large lexicons and datasets
are required. In this respect, Romanian is an under resourced
language [3] and does not benefit from readily available, high
quality language resources and systems. However, in recent
years more and more resources and tools have been developed
and published by the research community.

One of the most important linguistic resources for Roma-
nian was developed within the CoRoLa project [4], [5]. The
CoRoLa corpus of Romanian texts contains over 1 billion
tokens. The data is cleaned, partially annotated with expert

linguistic metadata and includes multiple text styles. The
datasets can be accessed through an online application.1

The open-source initiative of the online Romanian Explica-
tive Dictionary [6] is also a great resource for extracting word
inflections or part-of-speech tags, as well as the syllabic forms
of the words which do not follow the general syllabification
rules in Romanian.2

Scientific publications of Romanian textual resources in-
clude: Barbu et al. [7] published two Romanian dictionaries
of syllabic and inflected forms for over 500,000 Romanian
words of 65,000 different lemmas. Simionescu released an
extensive list of part-of-speech annotations for over 1,000,000
words [8].3 Domokos et al. [9] developed an extensive
grapheme-to-phoneme dictionary in SAMPA format, called
NAVIRO, and built from an initial list of 10,000 manually
transcribed words, and extended using artificial neural net-
works.4 Another freely available grapheme-to-phoneme dic-
tionary containing over 75,000 entries composed mainly of
the Romanian Scrabble’s Association’s official list of words
was introduced in [10].5

With the availability of these resources, other studies and
tools have been published, investigating either entire text
processing systems or only parts of them. The following listing
includes only those works related to the task of grapheme-to-
phoneme conversion or complete systems which contain the
phonetic conversion among other processes.

In [11] the use of neural networks for grapheme-to-phoneme
conversion in the context of text-to-speech synthesis is investi-
gated, and a 98.3% word-level accuracy is reported. A similar
approach, based on artificial neural networks, is presented in
[12] and [13]. The authors of [13] report a 92.83% accuracy
at phone-level. A set of rules for the Romanian grapheme-
to-phoneme transcription was developed in [14] and obtained
95% accuracy. Similar rule-based transcriptions combined
with decision trees are explored in [15]. The accuracy of
the method at word-level is 94.8% on one of the evaluation
subsets. The authors of [16] compare 5 separate methods based
on: decision trees, neural networks, support vector machines,

1http://corola.racai.ro/
2http://dexonline.ro
3http://nlptools.infoiasi.ro/WebPosTagger
4http://users.utcluj.ro/˜jdomokos/naviro/
5http://speech.utcluj.ro/marephor/



pronunciation by analogy and an expert system. Their best
results have an accuracy of 96.68% at word-level.

The work in [17] achieves a 93% word-level accuracy
for the Romanian grapheme-to-phoneme conversion using a
maximum entropy classifier and a custom data-driven al-
gorithm. [18] introduces a margin infused relaxed method
and a specialized algorithm for same processing task. The
reported word-level accuracy is 96.29%. The same authors
present in [19] a series of decision tree-based evaluations
for multiple Romanian and English text processing tasks,
including grapheme-to-phoneme conversion. The word-level
accuracy of the G2P module was reported at 95.05%.

A novel approach to the phonetic transcription task was
presented in [20] where grapheme-to-phoneme conversion
is performed using statistical machine translation principles
and obtains a 97.24% accuracy at word-level. The authors
of [10] use decision trees with various context lengths and
achieve a 99.61% accuracy at phone-level. The decision trees
are compared with deep learning networks in [21]. The best
algorithm obtained at most 99.63% accuracy at phone-level.

Table I summarizes these works and their reported accuracy.
However, the methods are not directly comparable as the
training datasets are not consistent across the studies. Also,
the level of the reported accuracy (i.e. phone- or word-level)
differs.

It is also worth mentioning a few papers which introduced
full text processing systems, such as [22] which addresses the
diacritic restoration, text normalization, syllabification, pho-
netic transcription and lexical stress positioning; [23] describes
a complete text-to-speech synthesis system including the front-
end text processing with syllabification, lexical stress assign-
ment and grapheme-to-phoneme conversion. [24] presents the
authors’ work on a full text processing tool for phonetic
transcription, syllabification and part-of-speech tagging.

In terms of grapheme-to-phoneme conversion for other lan-
guages, the most recent approaches make use of the complex
deep learning architectures. Studies on this topic are numerous
and include various mono- or multi-lingual tasks, as well as the
use of unsupervised representation learning for the graphemes:
[25] introduces a bidirectional long short-term memory archi-

TABLE I
RESULTS REPORTED IN THE LITERATURE FOR THE TASK OF

GRAPHEME-TO-PHONEME CONVERSION IN ROMANIAN

Paper Reference Level Accuracy

(Burileanu, 2002) [11] word 98.30%
(Ordean et al., 2009) [15] word 94.80%
(Toma et al., 2009) [14] word 95.00%
(Domokos et al., 2011) [13] phone 92.83%
(Toma et al., 2013) [16] word 96.68%
(Boroş et al.,2012) [17] word 93.00%
(Boroş et al., 2013) [18] word 96.29%
(Cucu et al., 2014) [20] word 97.24%
(Boroş et al. , 2017) [19] word 95.05%
(Toma et al., 2017) [10] phone 99.61%
(Stan et. al, 2018) [21] phone 99.63%

tecture combined with alignment-based models for translating
English words into their phonetic representations. [26] adapts
good G2P models for low-resource languages in a multilingual
framework. [27] experiments with uni- and bi-directional
LSTMs with various output delays combined with an n-
gram language model. [28] uses a multitask learning strategy
combined with n-gram language models to improve the G2P of
English and German texts. [29] learns global character vectors
from plain text resources and applies them to monolingual
and multilingual G2P conversion in a recurrent neural network
setup.

Starting from this overview, the aim of this paper is
to investigate the use of the newly developed sequence-to-
sequence deep learning models [30] applied to the Roma-
nian grapheme-to-phoneme conversion. The method evaluates
a simple encoder-decoder structure with different grapheme
input encoding and compares the results with those of a basic
decision tree algorithm.

The paper is organized as follows: Section II describes
the sequence-to-sequence algorithm and its internal network
structure. Section III introduces the datasets and evaluation
procedures, while conclusions and discussions are presented
in Section IV.

II. SEQUENCE-TO-SEQUENCE LEARNING FOR
GRAPHEME-TO-PHONEME CONVERSION

The task of grapheme-to-phoneme conversion implies vari-
able length input and output sequences, i.e. the length of the
word versus its phonetic transcription. The recently introduced
sequence-to-sequence models [30] can do just that. Their struc-
ture involves an encoder-decoder architecture. The encoder
aims to create a low-dimensional representation of the input
sequence which captures the essential information for the task
at hand. The output of the encoder is then used to condition
the decoder’s output. The decoder is trained on time-delayed
sequences, meaning that it learns to predict the next token
of the sequence. Both the encoder and decoder are neural
networks with recurrent or convolutional structures [31].

This work uses the recurrent architecture. Recurrent neural
networks (RNN) are a class of neural networks in which
connections between the nodes are made so that temporal
sequences can be accurately modeled [32]. This means that
the output at time step ti is conditioned on the state of the
network at time step ti−1 along with the current input.

However, in vanilla RNNs, sequences with long temporal
dependencies cannot be represented properly. The solution to
this problem is to use a specialized type of neural node able
to model longer temporal dependencies in the input data. One
such node is the Long Short Term Memory (LSTM) [33].
LSTMs have a more complex internal structure (see Figure 1)
which includes a series of gates designed to either allow,
partially allow or block the current information to pass to
the next time step. LSTMs have been successfully applied to
several complex tasks in NLP, such as machine translation
[30], language modeling [34] or text generation [35].

The equations describing the behavior of the LSTM are:



Fig. 1. Diagram for a one-unit Long Short-Term Memory (LSTM) [36]

ENCODER DECODER

a c a s ă <SS>

a k <SE>a s @

Fig. 2. Sequence-to-sequence model architecture. <SS> and <SE> mark
the sequence-start and sequence-end tokens, respectively.

it = σ(Wi[ht−1, xt] + bi) (1)

ft = σ(Wf [ht−1, xt] + bf ) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

ct = ftCt−1 + it tanh (Wc[ht−1, xt] + bc) (4)

ht = ot tanh(ct) (5)

where σ and tanh are the sigmoid and hyperbolic tangent
functions, respectively. xt is the input vector to the LSTM unit,
it is the input/update gate’s activation vector, ft is the forget
gate’s activation vector, and ot is the output gate’s activation
vector at time step t. W and b are the corresponding weight
matrices and bias vectors for each gate–these parameters are
learned in the training process. ct is the cell state vector at
time step t, and ht is the hidden state vector of the LSTM
unit. ht is also known as the output vector of this cell type.

Across all experiments the same sequence-to-sequence
model architecture was used. The architecture is composed of
a single layer LSTM in both the encoder and the decoder, as
shown in Figure 3. However, several input sequence encoding
strategies were evaluated: one-hot encoding, embedding layer
and grapheme embeddings. All encoding was performed at
grapheme-level.

The one-hot encoding (OHE) simply creates a 2D array
with the dimension MxN , where M is equal to the maximum
length of the input sequences, and N is equal to the number
of distinct characters available in the input sequences. Each

Encoder_input: InputLayer

Encoder_LSTM: LSTM Decoder_input: InputLayer

Decoder_LSTM: LSTM

Decoder_softmax: Dense

Fig. 3. Sequence-to-sequence network architecture

row has null elements except for one which is equal to 1. The
index i of the element equal to 1 is determined as the position
of the current input character c in the set of all possible input
characters {c1, c2, ..., ci, ..., cN}. For example, if the set of all
possible input characters is {a, b, c} and we want to encode
the sequence aababc the OHE of this sequence is:


1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1


The embedding layer (EL) is an additional neural layer

added between the encoder’s input and the LSTM. The embed-
ding layer is jointly learned with the rest of the sequence-to-
sequence model’s parameters. The task of the embedding layer
is to convert the input characters in each sequence into dense
vectors of fixed-length. The dense vectors should provide
better approximations of the input characters’ relevance to the
given learning task.

However, the training data in most NLP applications is
rather limited. Therefore, a fixed-length embedding of the
input characters could be learned from an external text re-
source, such as large amounts of raw texts. This embedding
would approximate the context in which each character from
the set can be found in a particular language. This grapheme
embedding (GE) is similar to the word embeddings [37]. The
difference is that vectors are obtained at character/letter level.
Word embeddings have proved their efficiency in a multitude
of NLP tasks [38], and grapheme embeddings were shown to
mimic the behavior of the phonetic transcription [39].



TABLE II
EXAMPLE OF INPUT-OUTPUT SEQUENCES FOR THE WORD

acasă (EN. home) USING THE ORTHOGRAPHIC FORM, ORTHOGRAPHIC
PLUS SYLLABIFICATION, ORTHOGRAPHIC PLUS LEXICAL STRESS, AND

ALL 3 COMBINED.

Type Input seq Output seq

Orthographic acasă a k a s @
Orthographic+Syllabification a-ca-să a k a s @
Orthographic+Lexical stress ac’asă a k a s @
Orthographic+Syllabification+Lexical stress a-c’a-să a k a s @

III. EVALUATION

A. Training data

To evaluate the performance of sequence-to-sequence mod-
els applied to Romanian grapheme-to-phoneme conversion, the
MaRePhor [10] phonetic dictionary was used.6 The dictionary
consists of 72,375 words and 591,570 letters. The entries are
words from the Romanian Scrabble Association’s official list
of words and the entries from a 15,517 words dictionary
developed according to the SpeechDat specifications. The
phonetic transcriptions are in SAMPA format.7

Aside from the direct grapheme-to-phoneme conversion, ad-
ditional linguistic information was added to the input data with
the aim of aiding the phonetic transcription. Syllabification
and lexical stress of the words were appended to the input
features. The syllabification of approximately 507,000 words
was extracted from the RoSyllabiDict lexicon [7]. The DEX
Online Database [6] which includes over 1,600,000 words and
their inflected forms along with the stress labels was selected
for lexical stress assignment.

Combining the common words in all 3 dictionaries a list of
62,874 words was obtained. The syllabification and lexical
stress were incorporated into the orthographic form of the
word, either individually or simultaneously. The output se-
quence was in all experiments only the phonetic transcription.
Table II shows an example of the entries. The data was
randomly split into training (80%) and testing (20%) sets. The
split was maintained across all evaluations so that there are no
differences between the systems caused by the random split
of the training and testing datasets.

The Wikipedia database dump for Romanian [40] was pro-
cessed through a word2vec model using the Gensim toolkit8 to
obtain the grapheme embeddings. The order of the embedding
was to set to 30 so that it is close to the number of letters in
the Romanian alphabet (i.e. 31 letters).

A plot of the t-SNE [41] visualizations of the grapheme
embeddings is presented in Figure 4. It can be noticed that
the vowels a, e, i, o, u are closely grouped together. The
same grouping can be found for the least frequent letters in
Romanian k, w, y, q. This means that, at least in theory, the
network can make use of better representations for its inputs.

6https://speech.utcluj.ro/marephor/
7https://www.phon.ucl.ac.uk/home/sampa/romanian.htm
8https://radimrehurek.com/gensim/

800 600 400 200 0 200 400

400

200

0

200

400

600

r

o

c

a

t
es

n

i

l p

d

î

f

m

g

â

u

b

v

x

z

j

h
w

yk

q

Fig. 4. Bidimensional t-SNE plot of the Wikipedia-based Romanian grapheme
embeddings

B. Results

The neural sequence-to-sequence architecture for the Ro-
manian grapheme-to-phoneme task, was implemented using
the Keras9 toolkit with TensorFlow backend.10 Because of the
non-sequential structure of the network, the functional API of
Keras was used. This enables us to merge the input of the
decoder with the hidden state of the encoder.

As a first step in the evaluation, we explored the hyper-
parameter setup of the network. Initial tests were carried out
for the dimension of the batch size and the latent dimension
of the LSTM layers in the encoder and decoder. The best
results were obtained using a batch size of 32 and a latent
dimension of 512 nodes. The embedding layer consists of 30
nodes so that there is a correspondence between the externally-
learned grapheme embeddings and this one. The weights of the
network were optimized using RMSprop, an algorithm similar
to Adagrad [42] which tunes the learning rate depending on an
running average of the recent gradients. The loss function was
set to categorical cross-entropy due to the multiclass output of
the decoder. The number of epochs was set to 20 for the OHE
and GE encodings. For the EL encoding, because the network
has to learn additional weights, the number of epochs was set
to 40.11.

Accuracy results of the 3 sequence-to-sequence networks
with their respective input embeddings are presented in Ta-
bles III, IV and V. The accuracy is measured at phone- and
word-level. Phone-level accuracy took into account all the
predicted phones, and not just the ones that pose problems
in Romanian (see [10]). It can be noticed that the GE input
achieves the highest accuracy scores: 99.51% at phone-level
and 97.40% at word-level when considering only the ortho-
graphic form of the word as input. If the syllabification and

9https://keras.io/
10https://www.tensorflow.org/
11Jupyter notebooks for all systems’ training flow are available here:

http://github.com/speech-utcluj/



TABLE III
ACCURACY RESULTS FOR SEQ2SEQ WITH ONE-HOT ENCODING

Accuracy [%]
Input features Phone Word

Orthographic 99.42 97.05
Orthographic+Syllabification 99.12 96.40
Orthographic+Lexical stress 99.01 95.85
Orthographic+Syllabification+Lexical stress 99.40 97.45

TABLE IV
ACCURACY RESULTS FOR SEQ2SEQ WITH WIKI-BASED GRAPHEME

EMBEDDINGS

Accuracy [%]
Input features Phone Word

Orthographic 99.51 97.40
Orthographic+Syllabification 99.30 96.40
Orthographic+Lexical stress 99.56 97.70
Orthographic+Syllabification+Lexical stress 99.62 97.90

the lexical stress are added to the input features, the accuracy
increases to 99.62% at phone-level and to 97.90% at word
level. Although there results are not directly comparable to the
ones presented in Table I due to the different training sets. It is,
however, safe to state that the sequence-to-sequence method
achieves similar accuracies as the state-of-the-art, if not higher.

However, the difference between the GE and OHE embed-
dings are not statistically significant. This can be explained
by the simple letter-to-sound rules in Romanian which can be
easily learned by this complex structure alone. It might be
the case that for languages where the grapheme-to-phoneme
conversion poses more complex problems, this difference
could increase. The EL has slightly lower accuracy values,
despite using twice the number of training epochs. This result
can be explained by the fact that the EL might need more
training data for the additional weights of the network. It is
also interesting to note the fact that the syllabification and
the lexical stress do not add that much value to the output
accuracy. And also that the syllabification alone can reduce it.
Again, it might be valuable to apply the same strategy to a
more complex G2P language, as the Romanian results might
already be plateaued.

As baseline, a simple decision tree classifier was also
evaluated. The input to the decision tree is a window of
graphemes centered around the predicted grapheme. Results
for this algorithm are presented in Table VI for phone- and
word-level accuracies, and with the addition of the linguistic
information, i.e. syllabification and lexical stress. The feature
encoding for the decision tree follows the steps described
in [21]. Results show that even with this simple algorithm,
the G2P task for Romanian can be solved with rather high
accuracy.

IV. CONCLUSIONS

This paper evaluated the use of sequence-to-sequence learn-
ing strategies for Romanian grapheme-to-phoneme conversion.

TABLE V
ACCURACY RESULTS FOR SEQ2SEQ WITH EMBEDDING LAYER

Accuracy [%]
Input features Phone Word

Orthographic 98.75 95.40
Orthographic+Syllabification 98.42 95.26
Orthographic+Lexical stress 99.01 96.00
Orthographic+Syllabification+Lexical stress 99.15 96.25

TABLE VI
ACCURACY RESULTS OF THE DECISION TREE CLASSIFIER FOR A

WINDOW LENGTH OF 5 CHARACTERS

Accuracy [%]
Input features Phone Word

Orthographic 99.54 96.71
Orthographic+Syllabification 99.52 96.68
Orthographic+Lexical stress 99.56 96.95
Orthographic+Syllabification+Lexical stress 99.60 97.17

The strategies involved the use of various input feature en-
codings, such as one-hot encoding, an additional embedding
layer, or grapheme embeddings learned from an external
text resource. The evaluation also included an analysis of
combining the orthographic form of the words with their
syllabification, lexical stress or both. The results of the systems
were compared in terms of phone- and word-level accuracy
scores. A decision tree algorithm trained to predict each phone
individually from a character window sequence was included
as baseline. The best results were obtained with the grapheme
embeddings and all additional linguistic information, and
achieve a phone-level accuracy of 99.62% and word-level
accuracy of 97.90%. However, the difference between all the
setups is not significant, and means that the sequence-to-
sequence strategy is sufficient for the G2P task in Romanian.

One problem noticed in the sequence-to-sequence model
prediction is that, because the decoder is conditioned only on
the hidden state of the encoder, and that it only learns to predict
the next phoneme in the output sequence, sometimes the order
of the output phonemes is scrambled. One way to overcome
this issue would be to condition the decoder on the current
input grapheme as well, or to extend the available training
data.

As future work, other network architectures could be consid-
ered. But it would also be interesting to test the simultaneous
prediction of the phonetic transcription, syllabification and
lexical stress assignment.
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J. Raiman, and J. Miller, “Deep Voice 3: 2000-Speaker Neural Text-to-
Speech,” CoRR, vol. abs/1710.07654, 2017.

[3] D. Trandabat, E. Irimia, V. Barbu-Mititielu, D. Cristea, and D. Tufis,
“The Romanian Language in the Digital Era,” Springer, Metanet White
Paper Series, 2012.

[4] V. B. Mititelu, E. Irimia, and D. Tufis, “CoRoLa:The Reference Corpus
of Contemporary Romanian Language,” in LREC, 2014, pp. 1235–1239.

[5] D. Tufis, , V. B. Mititelu, E. Irimia, S, . D. Dumitrescu, and T. Boros, ,
“The IPR-cleared corpus of contemporary written and spoken Romanian
language,” in Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016). Portorož, Slovenia:
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